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Abstract

We consider planar vector fields depending on a real parameter. It is assumed

that this vector field has a family of limit cycles which can be described by means

of the limit cycles function l. We prove a relationship between the multiplicity of

a limit cycle of this family and the order of a zero of the limit cycles function.

Moreover, we present a procedure to approximate l(x), which is based on the New-

ton scheme applied to the Poincaré function and represents a continuation method.

Finally, we demonstrate the effectiveness of the proposed procedure by means of a

Liénard system.
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1 Introduction

We consider the planar autonomous system

dx

dt
= P (x, y, a),

dy

dt
= Q(x, y, a) (1.1)

depending on the scalar parameter a for (x, y) ∈ Ω ⊂ R2. Under certain conditions,

the phase portrait of system (1.1) in Ω is determined by the so-called singular

trajectories, namely equilibria, separatrices and limit cycles of (1.1) in Ω (see, e.g.,

[1, 11]). The most difficult problem in studying these singular trajectories is to

localize multiple limit cycles and to estimate the number of limit cycles. This

problem is still unsolved even in the case of polynomial systems, and it represents

the second part of the famous 16-th problem of D. Hilbert [9, 12]. As already D.

Hilbert indicated, the investigation of the dependence of limit cycles on parameters

should play a fundamental role in solving the posed problem.
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Our main goal is to exploit the parameter dependence in (1.1) for detecting multiple

limit cycles. If we consider the parameter a as an additional state variable, then we

get from (1.1) the extended system

dx

dt
= P (x, y, a),

dy

dt
= Q(x, y, a),

da

dt
= 0. (1.2)

We assume that this system has an invariant manifold of the form

a = m(x, y) (1.3)

consisting of limit cycles of system (1.1), and that there exists a smooth segment

S := {(x, y) ∈ R2 : y = s(x), x0 ≤ x ≤ x1}

in the phase plane such that any limit cycle of the family (1.3) intersects S transver-

sally and there are no two distinct limit cycles of this family intersecting S in the

same point. Then, the limit cycles of the family (1.3) can be uniquely characterized

by the x-coordinate of their intersection point (x, s(x)) with the segment S. We de-

note by L(x) the limit cycle of the family (1.3) intersecting S in the point (x, s(x)).

Now we introduce the function l: [x0, x1] → R by

l(x) := m(x, s(x)), (1.4)

which associates L(x) with the corresponding parameter a. This function is called

the limit cycles function. Under some conditions it coincides with the Andronov-

Hopf function [2, 4, 7, 8]. In this note we will show that the order of a zero of

the derivative of l(x) is related to the multiplicity of the corresponding limit cycle

L(x). Moreover, we present a procedure to approximate l(x), which is based on

the Newton scheme applied to the Poincaré function and represents a continuation

method. Finally, we demonstrate the effectiveness of the proposed procedure by

means of a Liénard system.

For all calculations we used the software MATHEMATICA 5.2.

2 Prelimineries

Let Ω be some simply connected region in R2, and let I ⊂ R be some interval. We

consider system (1.1) in Ω for a ∈ I under the following smoothness assumption.

(A1). P and Q are n-times continuously differentiable with respect to x and y,

and continuously differentiable with respect to a in Ω × I with n ≥ 1.

System (1.1) defines the planar vector field f := (P,Q) on Ω. We denote f as

smooth if assumption (A1) is satisfied.

An isolated periodic solution of (1.1) which is no stationary solution is called a

limit cycle.
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Our key assumptions with respect to the extended system (1.2) are the following

ones.

(A2). There is a smooth functional m: dom m ⊂ Ω → I such that system (1.2)

has an invariant manifold of the form

M = {(x, y, a) ∈ R3 : a = m(x, y), (x, y) ∈ dom m}, (2.1)

consisting of limit cycles of system (1.1).

Remark 2.1 The invariance of M implies that the functional m satisfies the rela-

tion

∂m

∂x
(x, y)P (x, y,m (x, y)) +

∂m

∂y
(x, y)Q(x, y,m (x, y)) ≡ 0 for (x, y) ∈ dom m. (2.2)

(A3). There is a smooth segment S := {(x, y) ∈ Ω : y = s(x), x0 ≤ x ≤ x1}
intersecting transversally all limit cycles belonging to M. There are no two different

limit cycles of M intersecting S in the same point.

Definition 2.1 The function l: [x0, x1] → I defined by (1.4) is called the limit

cycles function.

We note that l is a smooth function. In case that the manifold M is connected

with the bifurcation of a limit cycle from an equilibrium point and that the pa-

rameter a rotates the vector field f , the limit cycles function l coincides with the

Andronov-Hopf function (see [2, 4, 7, 8]).

To illustrate the introduced concepts we consider the system

dx

dt
= −y + x(x2 + y2 − a)n ≡ P (x, y, a),

dy

dt
= x + y(x2 + y2 − a)n ≡ Q(x, y, a)

(2.3)

for a ∈ R, n ∈ N . Using polar coordinates x = r cos ϕ, y = r sin ϕ system (2.3)

reads

dr

dt
= r(r2 − a)n,

dϕ

dt
= 1.

(2.4)

It is easy to verify that the circle

Ka := {(x, y) ∈ R2 : x2 + y2 = a, a > 0}

is a limit cycle of system (2.3). Thus, we have m(x, y) := x2 + y2 with dom m

:= R2\{(0, 0)} for any n, and the invariant manifold M is connected with the

bifurcation of the limit cycle Ka from the origin when a passes the value zero for
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increasing a. It is also obvious that the positive x−axis intersects the limit cycle

Ka transversally. Hence, we have s(x) ≡ 0 and the limit cycles function l reads

l(x) ≡ x2 and is defined for x > 0. From (2.3) we get the relation

P (x, y, a)
∂Q

∂a
(x, y, a) − Q(x, y, a)

∂P

∂a
(x, y, a) = n(x2 + y2)(x2 + y2 − a)n−1

that implies that system (2.3) represent for n = 1 a rotated vector field, and thus

the limit cycles function l coincides with the Andronov-Hopf function.

Since for x ∈ [x0, x1] the limit cycle L(x) of system (1.1) for a = l(x) intersects

the segment S transversally, the Poincaré function π(x, a) (first return function) is

defined for x ∈ [x0, x1] and a near l(x). From the property that a fixed point of the

Poincaré function corresponds to a periodic solution of (1.1), we have according to

the definition of l

π(x, l(x)) ≡ x for x ∈ [x0, x1]. (2.5)

Introducing the displacement function δ by

δ(x, a) := π(x, a) − x, (2.6)

then an isolated root of the displacement function corresponds to a limit cycle of

(1.1).

Definition 2.2 A limit cycle is called a limit cycle of multiplicity k if the corre-

sponding isolated root of the displacement function δ has multiplicity k.

To determine the multiplicity of the limit cycle Ka of system (2.3) for n = 1 we

consider the corresponding equation in polar coordinates and study the initial value

problem
dr

dϕ
= r(r2 − a), r(0) = r0 > 0.

As solution we get

r(ϕ, r0, a) = r0

√

a

r2
0 − (r2

0 − a)2ϕa
.

Thus, we have

δ(r0, a) = r(2π, r0, a) − r0 = r0

(
√

a

r2
0 − (r2

0 − a)4πa
− 1

)

.

The following relations can be verified

δ(
√

a, a) = 0, δr0
(
√

a, a) = −1.

Thus, Ka is a simple limit cycle for system (2.3) with n = 1.
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3 Multiple limit cycles

In this section we derive an result about the zeros of the derivative of the limit

cycles function l and the existence of multiple limit cycles. From (2.5) and (2.6) we

get

δ(x, l(x)) = π(x, l(x)) − x ≡ 0 for x ∈ dom l.

Differentiating this relation we obtain

πx(x, l(x)) − 1 + πa(x, l(x)) l′(x) ≡ 0. (3.1)

Hence, if we have

πa(x̃, l(x̃)) 6= 0 (3.2)

for some x̃ ∈ dom l, it holds

l′(x̃) = π−1
a (x̃, l(x̃)) (1 − πx(x̃, l(x̃))) = −π−1

a (x̃, l(x̃)) δx(x̃, l(x̃)). (3.3)

Thus, under the condition (3.2), the property that for a = l(x̃) the limit cycle

L(x̃) of system (2.3) represents a simple limit cycle is equivalent to the condition

l′(x̃) 6= 0.

Further, differentiating relation (3.1) we obtain

πxx(x, l(x)) + 2πxa(x, l(x)) l′(x) + πaa(x, l(x)) (l′(x))2 + πa(x, l(x)) l′′(x) ≡ 0.

If we assume δx(x̃, l(x̃)) = 0, which implies l′(x̃) = 0, then we get from (3.3)

under the condition (3.2) the relation

l′′(x̃) = −π−1
a (x̃, l(x̃))δxx(x̃, l(x̃)).

Analogously, after k−times differentiating the displacement function δ we obtain

π(k)
x (x, l(x)) + f1(x) l′(x) + f2(x) l′′(x) + ... + πa(x, l(x)) l(k)(x) ≡ 0.

If we assume

δx(x̃, l(x̃)) = δxx(x̃, l(x̃)) = ... = δ(k−1)
x (x̃, l(x̃)) = 0

we get under the validity of (3.2)

l′(x̃) = l′′(x̃) = ... = l(k−1)(x̃) = 0, l(k)(x̃) = −π−1
a (x̃, l(x̃))δ(k)

x (x̃, l(x̃)).

Hence, we have the result

Theorem 3.1 Suppose that the assumptions (A1) − (A3) hold and that for some

x̃ ∈ dom l the relation (3.2) is valid. Then a necessary and sufficient condition for

L(x̃) to be a limit cycle of multiplicity k, k ≤ n, is that x̃ is a root of the function

l′(x) of order k − 1.
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To illustrate that theorem we consider the system

dx

dt
= −y + x((x2 + y2 − 1)2 − a) ≡ P (x, y, a),

dy

dt
= x + y((x2 + y2 − 1)2 − a) ≡ Q(x, y, a)

(3.4)

for a ∈ R. Using polar coordinates x = rcos ϕ, y = rsin ϕ, system (3.4) reads

dr

dt
= r((r2 − 1)2 − a),

dϕ

dt
= 1.

(3.5)

The extended system to (3.4) has for a ≥ 0 the invariant manifold a = (x2 +y2−1)2

consisting of limit cycles of system (3.4). The positive x-axis intersects these limit

cycles transversally. Thus, the limit cycle function l reads l(x) := (x2−1)2. It has a

simple minimum at x = 1, where l takes the value a = l(1) = 0. The corresponding

limit cycle L(1) reads x2 + y2 = 1. To determine its multiplicity we consider the

initial value problem
dr

dϕ
= r(r2 − 1)2, r(0) = r0

that has the implicit solution

1

2(r2
0 − 1)

− 1

2(r2(ϕ, r0) − 1)
+ ln

(

r(ϕ, r0)
√

r2(ϕ, r0) − 1

)

− ln

(

r0
√

r2
0 − 1

)

= ϕ.

Using this relation we get

δ(1) = 0, δr0
(1) = 0, δr0r0

(1) 6= 0.

This can be verified e.g. by means of the software MATHEMATICA 5.2. Hence,

the limit cycle x2 + y2 = 1 of system (3.4) with a = 0 has the multiplicity 2.

4 A numerical procedure to approximate the

limit cycles function

In what follows we describe a numerical method to approximate to given x ∈ dom

l the value of l(x). For this purpose we denote by (x̄(t, x, y, a), ȳ(t, x, y, a)) the

solution of (1.1) satisfying x̄(0, x, y, a) = x, ȳ(0, x, y, a) = y. Under the hypotheses

(A1) − (A3), to x ∈ dom l there is a unique parameter value a = l(x) and a unique

primitive period T = T (x) > 0 such that the orbit of system (1.1) starting at the

point (x, s(x)) is the limit cycle L(x) with primitive period T (x). Hence, the system

of equations

x̄(T, x, s(x), a) − x = 0, ȳ(T, x, s(x), a) = s(x) (4.1)
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can be used to determine a and T as functions of x.

Our basic idea is to apply a continuation method to compute l(x) for x ∈ dom l.

We assume that for some point x = x0 the value a0 = l(x0) as well as the limit cycle

L(x0) is known and use these facts for our continuation method. For the following we

assume that x0 and the corresponding value l(x0) is connected with the appearance

of a simple limit cycle from the equilibrium point (xe, ye) of system (1.1) (Andronov-

Hopf bifurcation) when a passes the value l(x0). From the theory of Andronov-Hopf

bifurcation we know that the primitive period T0 of the bifurcating limit cycle

satisfies T0 = 2π/b0, where b0 is the imaginary part of the critical eigenvalues of

the Jacobian of the right hand side of (1.1) for a = a0 = l(x0) at the equilibrium

(xe, ye). Moreover, we can use a segment of the straight line y = ye as our segment

S.

In the next step we replace x0 by x0 + h, where h is a small positive number and

apply Newton’s iteration scheme to determine a and T from system (4.1), where we

use a0 and T0 = 2π/b0 as initial guess.

In the practical realization we use a slight modification of this procedure. By means

of the transformation t = T (x)
2π

τ = µτ with µ = T (x)
2π

we introduce a new time τ

such that the primitive period of the limit cycle L(x) is always 2π, but then we have

to determine the additional parameter µ. Using the new time τ , we get from (1.1)

the system

dx

dτ
= µP (x, y, a),

dy

dτ
= µQ(x, y, a). (4.2)

If we denote by (x̃(τ, x, ye, µ, a), ỹ(τ, x, ye, µ, a)) the solution of system (4.2) satisfy-

ing

x̃(0, x, ye, µ, a) = x, ỹ(0, x, ye, µ, a) = ye,

then the system of equations which analogously to (4.1) determines the parameters

a and µ has the form

ϕ1(x, a, µ) ≡ x̃(2π, x, ye, µ, a) − x = 0,

ϕ2(x, a, µ) ≡ ỹ(2π, x, ye, µ, a) = ye.
(4.3)

Suppose we have determined to the sequence x1, ..., xi−1 the values µ∗

1, ..., µ
∗

i−1,

a∗1, ..., a
∗

i−1 approximating the corresponding values µ(x1) = T (x)/2π, ..., µ(xi−1) =

T (xi−1)/2π, and a(x1) = l(x1), ..., a(xi−1) = l(xi−1). In order to determine to xi the

corresponding approximating values (µ∗

i , a
∗

i ) we apply Newton’s method to system

(4.3) yielding the sequence (µk
i , a

k
i ) defined by

(

ak+1
i

µk+1
i

)

=

(

ak
i

µk
i

)

− J−1
k (xi)

(

ϕ1(xi, µ
k
i , a

k
i )

ϕ2(xi, µ
k
i , a

k
i , )

)

, k = 0, 1, ...
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where a0
i = a∗i−1, µ

0
i = µ∗

i−1,

Jk(xi) =

(

∂x̃
∂a

(2π, xi, ye, µ
k
i , a

k
i )

∂x̃
∂µ

(2π, xi, ye, µ
k
i , a

k
i )

∂ỹ
∂a

(2π, xi, ye, µ
k
i , a

k
i )

∂ỹ
∂µ

(2π, xi, ye, µ
k
i , a

k
i )

)

.

Remark 4.1 Under the assumption that the Jacobian matrix Jk(xi) is invertible

and that the difference |xi − xi−1| is sufficiently small for any i, the sequences

{µk
i }, {ak

i }, converge to µ∗

i , a
∗

i , respectively, as k tends to infinity.

The entries of the matrix Jk can be calculated by solving the initial value problem

dx

dτ
= µP (x, y, a),

dy

dτ
= µQ(x, y, a),

d(∂x
∂a

)

dτ
= µ

(

∂P

∂a
+

∂P

∂x

∂x

∂a
+

∂P

∂y

∂y

∂a

)

,

d(∂y
∂a

)

dτ
= µ

(

∂Q

∂a
+

∂Q

∂x

∂x

∂a
+

∂Q

∂y

∂y

∂a

)

,

d(∂x
∂µ

)

dτ
= P + µ

(

∂P

∂x

∂x

∂µ
+

∂P

∂y

∂y

∂µ

)

,

d( ∂y
∂µ

)

dτ
= Q + µ

(

∂Q

∂x

∂x

∂µ
+

∂Q

∂y

∂y

∂µ

)

,

x(0, xi, ye, µ
k
i , a

k
i ) = xi, y(0, xi, ye, µ

k
i , a

k
i ) = ye,

∂x

∂µ
(0, xi, ye, µ

k
i , a

k
i ) =

∂y

∂µ
(0, xi, ye, µ

k
i , a

k
i ) = 0,

∂x

∂a
(0, xi, ye, µ

k
i , a

k
i ) =

∂y

∂a
(0, xi, ye, µ

k
i , a

k
i ) = 0.

5 Example

We consider the Liénard system

dx

dt
= y + ax − 1024x11 − 2816x9 + 2816x7 − 12325x5 + 220x3

1024
≡ P (x, y, a),

dy

dt
= −x ≡ Q(x, y, a)

(5.1)

depending on the real parameter a. This system has the following properties.

(i). It has a unique equilibrium point in the finite part of the phase plane, namely

the origin, which does not depend on the parameter a.
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(ii). Let α(a) ± iβ(a) be the eigenvalues of the linearization of system (5.1) for

small a at the origin. We have

α(0) = 0, α′(0) = 1/2, β(0) > 0.

The corresponding Lyapunov number α1 (see, e.g., [6, 10]) is negative.

(iii). By (5.1) we have

Q(x, y)P ′

a(x, y, a) ≡ −x2,

that is, the parameter a rotates the vector field f corresponding to (5.1) (see

[6, 10]).

(iv) Any trajectory of (5.1) intersects the positive x-axis transversally.

From (ii) we get that Hopf bifurcation takes place when the parameter a crosses

zero, where exactly one limit cycle Γ(a) bifurcates from the origin for increasing

a. This limit cycle is simple and orbitally asymptotically stable. Moreover, by

property (iv), for small a this limit cycle intersect the positive x-axis transversally.

From the theory of rotated vector fields [6, 10] we get that Γ(a1) and Γ(a2) do not

intersect for small a1 and a2 if a1 6= a2. Thus, the family of bifurcating limit cycles

{Γ(a)} can be characterized also by the x-coordinates of their intersection point

with the positive x-axis, that means by the limit cycle function l, which coincides in

the present case with the Andronov-Hopf function. In a given small neighborhood

of the origin the number of limit cycles can change by the occurrence of multiple

limit cycles. In our case, we restrict to the neighborhood x2 + y2 ≤ 1.2 and use

the limit cycle function l to investigate the appearance of multiple limit cycles. By

applying the numerical procedure described in the section before we compute l(x)

for x = 0.01 + j 0.025, j = 1, .., 44. Then we approximate the obtained set of points

by some polynomial lN of order N . For this purpose we apply the method of least

squares. We choose N in such a way that number of extrema of the polynomial lN

in the interval [0.01, 1.085] does not change if we increase N . By this way, we have

got the result

l9(x) = 0.154224x2 + 0.124769x3 − 1.63087x4

+ 3.22805x5 − 5.36163x6 + 8.75029x7 − 7.9267x8 + 2.6726x9.

By means of Sturm’s chains we can prove that the polynomial l9 has in the interval

[0.01, 1.085] exactly four extrema: the points A(0.4522, 0.0121) and C(0.8726, 0.0111)

are minima, the points B(0.6952, 0.0101) and D(0.9758, 0.0105) are maxima. The

graph of the function a = l9(x) is represented in Fig. 1. From these investigations

we can conclude that system (5.1) has at least five limit cycles for 0.0105003 ≤ a ≤
0.0111532.
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Figure 1: Graph of the function a = l9(x)

Figure 2: Ovals defined by Ψ(x, y) = 0

To check the quality of the obtained numerical results for a = 0.0107 we apply

the method of Dulac-Cherkas function Ψ(x, y) as described in [3, 4, 5, 7]. We

construct the function Ψ(x, y) in the form of a polynomial of 100-th degree. The

curve Ψ(x, y) = 0 defines five nested ovals surrounding the unique finite equilibrium

at the origin (Fig. 2) which are intersected transversally by the trajectories of

system (5.1) for a = 0.0107. Using the techniques from [7] we can establish that

system (5.1) for a = 0.0107 has exactly five limit cycles. We note that it is possible

to construct a Dulac-Cherkas function which depends on the parameter a and to

prove that system (5.1) has for any a not more than five limit cycles.
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