61 research outputs found

    The effects of methanol on the trapping of volatile ice components

    Get PDF
    The evaporation of icy mantles, which have been formed on the surface of dust grains, is acknowledged to give rise to the rich chemistry that has been observed in the vicinity of hot cores and corinos. It has long been established that water ice is the dominant species within many astrophysical ices. However, other molecules found within astrophysical ices, particularly methanol, can influence the desorption of volatile species from the ice. Here we present a detailed investigation of the adsorption and desorption of methanol-containing ices, showing the effect that methanol has on the trapping and release of volatiles from model interstellar ices. OCS and CO2 have been used as probe molecules since they have been suggested to reside in water-rich and methanol-rich environments. Experiments show that methanol fundamentally changes the desorption characteristics of both OCS and CO2, leading to the observation of mainly codesorption of both species with bulk water ice for the tertiary ices and causing a lowering of the temperature of the volcano component of the desorption. In contrast, binary ices are dominated by standard volcano desorption. This observation clearly shows that codepositing astrophysically relevant impurities with water ice, such as methanol, can alter the desorption dynamics of volatiles that become trapped in the pores of the amorphous water ice during the sublimation process. Incorporating experimental data into a simple model to simulate these processes on astrophysical timescales shows that the additional methanol component releases larger amounts of OCS from the ice mantle at lower temperatures and earlier times. These results are of interest to astronomers as they can be used to model the star formation process, hence giving information about the evolution of our Universe

    Chinese hamster ovary cells can produce galactose-α-1,3-galactose antigens on proteins

    Get PDF
    Chinese hamster ovary (CHO) cells are widely used for the manufacture of biotherapeutics, in part because of their ability to produce proteins with desirable properties, including 'human-like' glycosylation profiles. For biotherapeutics production, control of glycosylation is critical because it has a profound effect on protein function, including half-life and efficacy. Additionally, specific glycan structures may adversely affect their safety profile. For example, the terminal galactose-α-1,3-galactose (α-Gal) antigen can react with circulating anti α-Gal antibodies present in most individuals. It is now understood that murine cell lines, such as SP2 or NSO, typical manufacturing cell lines for biotherapeutics, contain the necessary biosynthetic machinery to produce proteins containing α-Gal epitopes. Furthermore, the majority of adverse clinical events associated with an induced IgE-mediated anaphylaxis response in patients treated with the commercial antibody Erbitux (cetuximab) manufactured in a murine myeloma cell line have been attributed to the presence of the α-Gal moiety. Even so, it is generally accepted that CHO cells lack the biosynthetic machinery to synthesize glycoproteins with α-Gal antigens. Contrary to this assumption, we report here the identification of the CHO ortholog of N-acetyllactosaminide 3-α-galactosyltransferase-1, which is responsible for the synthesis of the α-Gal epitope. We find that the enzyme product of this CHO gene is active and that glycosylated protein products produced in CHO contain the signature α-Gal antigen because of the action of this enzyme. Furthermore, characterizing the commercial therapeutic protein abatacept (Orencia) manufactured in CHO cell lines, we also identified the presence of α-Gal. Finally, we find that the presence of the α-Gal epitope likely arises during clonal selection because different subclonal populations from the same parental cell line differ in their expression of this gene. Although the specific levels of α-Gal required to trigger anaphylaxis reactions are not known and are likely product specific, the fact that humans contain high levels of circulating anti-α-Gal antibodies suggests that minimizing (or at least controlling) the levels of these epitopes during biotherapeutics development may be beneficial to patients. Furthermore, the approaches described here to monitor α-Gal levels may prove useful in industry for the surveillance and control of α-Gal levels during protein manufacture.National Center for Research Resources (U.S.) (Grant P41 RR018501-01

    Functional Deficits in nNOSμ-Deficient Skeletal Muscle: Myopathy in nNOS Knockout Mice

    Get PDF
    Skeletal muscle nNOSμ (neuronal nitric oxide synthase mu) localizes to the sarcolemma through interaction with the dystrophin-associated glycoprotein (DAG) complex, where it synthesizes nitric oxide (NO). Disruption of the DAG complex occurs in dystrophinopathies and sarcoglycanopathies, two genetically distinct classes of muscular dystrophy characterized by progressive loss of muscle mass, muscle weakness and increased fatigability. DAG complex instability leads to mislocalization and downregulation of nNOSμ; but this is thought to play a minor role in disease pathogenesis. This view persists without knowledge of the role of nNOS in skeletal muscle contractile function in vivo and has influenced gene therapy approaches to dystrophinopathy, the majority of which do not restore sarcolemmal nNOSμ. We address this knowledge gap by evaluating skeletal muscle function in nNOS knockout (KN1) mice using an in situ approach, in which the muscle is maintained in its normal physiological environment. nNOS-deficiency caused reductions in skeletal muscle bulk and maximum tetanic force production in male mice only. Furthermore, nNOS-deficient muscles from both male and female mice exhibited increased susceptibility to contraction-induced fatigue. These data suggest that aberrant nNOSμ signaling can negatively impact three important clinical features of dystrophinopathies and sarcoglycanopathies: maintenance of muscle bulk, force generation and fatigability. Our study suggests that restoration of sarcolemmal nNOSμ expression in dystrophic muscles may be more important than previously appreciated and that it should be a feature of any fully effective gene therapy-based intervention

    Turnover of BRCA1 Involves in Radiation-Induced Apoptosis

    Get PDF
    Background: Germ-line mutations of the breast cancer susceptibility gene-1 (BRCA1) increase the susceptibility to tumorigenesis. The function of BRCA1 is to regulate critical cellular processes, including cell cycle progression, genomic integrity, and apoptosis. Studies on the regulation of BRCA1 have focused intensely on transcription and phosphorylation mechanisms. Proteolytic regulation of BRCA1 in response to stress signaling remains largely unknown. The manuscript identified a novel mechanism by which BRCA1 is regulated by the ubiquitin-dependent degradation in response to ionization. Methodology/Principal Findings: Here, we report that severe ionization triggers rapid degradation of BRCA1, which in turn results in the activation of apoptosis. Ionization-induced BRCA1 turnover is mediated via an ubiquitin-proteasomal pathway. The stabilization of BRCA1 significantly delays the onset of ionization-induced apoptosis. We have mapped the essential region on BRCA1, which mediates its proteolysis in response to ionization. Moreover, we have demonstrated that BRCA1 protein is most sensitive to degradation when ionization occurs during G2/M and S phase. Conclusions/Significance: Our results suggest that ubiquitin-proteasome plays an important role in regulating BRCA1 during genotoxic stress. Proteolytic regulation of BRCA1 involves in ionization-induced apoptosis. © 2010 Liu et al

    SOD AND GSH INHIBIT THE HIGH GLUCOSE-INDUCED OXIDATIVE DAMAGE AND THE PDGF INCREASED SECRETION IN CULTURED HUMAN ENDOTHELIAL-CELLS

    No full text
    Poor control of blood glucose has been established as a key pathogenetic mechanism in the vascular complications of diabetes. It has been reported that glucose may autooxidize generating free radicals which have been suggested to delay proliferation, to modify mobility, to influence platelet-derived growth factor and other secretory protein production in a variety of cell systems. Platelet-derived growth factor, in turn, may induce proliferation and migration of vascular smooth muscle cells and thus play a role in atherogenesis. In the present study the effects of antioxidants on the high glucose-dependent oxidative cell damage and increased platelet-derived growth factor secretion have been investigated using cultured human endothelial cells. Our findings show that rising the glucose concentration in the culture medium from 5 mM to 20 mM, increased the production of free radicals cell damage markers, such as malondialdehyde and conjugated dienes, as well as the production of platelet-derived growth factor. The addition of super oxide dismutase or glutathione prevents both such effects. These results suggest that antioxidants may be a helpful therapeutic adjuvant to reduce the vascular complications of diabetes
    corecore