49 research outputs found
Scorzonera sensu lato (Asteraceae, Cichorieae) β taxonomic reassessment in the light of new molecular phylogenetic and carpological analyses
Scorzonera comprises 180β190 species and belongs to the subtribe Scorzonerinae. Its circumscription has long been the subject of debate and available molecular phylogenetic analyses affirmed the polyphyly of Scorzonera in its wide sense. We provide a re-evaluation of Scorzonera and other related genera, based on carpological (including anatomical) and extended molecular phylogenetic analyses. We present, for the first time, a comprehensive sampling, including Scorzonera in its widest sense and all other genera recognised in the Scorzonerinae. We conducted phylogenetic analyses using Maximum Parsimony, Maximum Likelihood and Bayesian analyses, based on sequences of the nuclear ribosomal ITS and of two plastid markers (partial rbcL and matK) and Maximum Parsimony for reconstructing the carpological character states at ancestral nodes. Achene characters, especially related to pericarp anatomy, such as general topography of the tissue types, disposition of the mechanical tissue and direction of its fibres, presence or absence of air cavities, provide, in certain cases, support for the phylogenetic lineages revealed. Confirming the polyphyly of Scorzonera, we propose a revised classification of the subtribe, accepting the genera Scorzonera (including four major clades: Scorzonera s. str., S. purpurea, S. albicaulis and Podospermum), Gelasia, Lipschitzia gen. nov. (for the Scorzonera divaricata clade), Pseudopodospermum, Pterachaenia (also including Scorzonera codringtonii), Ramaliella gen. nov. (for the S. polyclada clade) and Takhtajaniantha. A key to the revised genera and a characterisation of the genera and major clades are provided
Phylogeny, biogeography and systematics of Dysphanieae (Amaranthaceae)
After a rather turbulent taxonomic history, Dysphanieae (Chenopodioideae, Amaranthaceae) were established to contain five genera, four of which are monospecific (Cycloloma, Neomonolepis, Suckleya, Teloxys) and geographically restricted, and the fifth genus, Dysphania, having a nearly worldwide distribution and comprising ca. 50 species. This study investigates the phylogeny, biogeography and taxonomy of Dysphanieae. We studied specimens from 32 herbaria to infer morphological differences and distribution areas of the species and sampled 121 accessions representing 39 accepted species of the tribe for molecular phylogenetic analyses. The molecular phylogeny tested generic relationships of the tribe and infrageneric relationships of Dysphania on the basis of two plastid DNA markers (atpB-rbcL spacer, rpl16 intron) and two nuclear ribosomal markers (ETS, ITS) and was also used for an ancestral area reconstruction with BioGeoBEARS. Three of the monospecific genera (Neomonolepis, Suckleya, Teloxys) form a basal grade and appear to be relictual lineages of the tribe, while Cycloloma is nested within Dysphania. The ancestral area reconstruction favors a widespread ancestry for Dysphanieae, and the relictual lineages in Asia (Teloxys) and North America (Neomonolepis, Suckleya) might be explained by a wide distribution across Beringia during the Late Oligocene/Early Miocene. Dysphania likely originated in North America; however, the simultaneous diversification into three major clades, an Asian/African, an American and an Australian/African clade, indicates a widespread ancestor at the crown node of Dysphania. Our taxonomic revision results in four accepted genera in Dysphanieae, Dysphania, Neomonolepis, Suckleya and Teloxys. The sectional subdivision for Dysphania is revised. We subdivide the genus into five sections, D. sect. Adenois (13 spp.), D. sect. Botryoides (10 spp.), D. sect. Dysphania (17 spp.), D. sect. Incisa (2 spp.) and D. sect. Margaritaria (4 spp.); three strongly deviating species remain unplaced and need further attention.Peer reviewe
Comparative analysis of Illumina and Ion Torrent high-throughput sequencing platforms for identification of plant components in herbal teas
Β© 2018 Elsevier Ltd The rapid development of high-throughput sequencing (HTS) methods offers new opportunities for food quality control and identification of food components using the DNA barcoding approach (metabarcoding in cases of complex mixes). However, the protocols of DNA barcoding applied to food analysis are not yet fully established; testing and optimization are required to achieve the highest accuracy and cost efficiency. We report here a comparative study of the two most widely used sequencing platforms - Illumina and Ion Torrent - for composition analysis of herbal teas, and show that both technologies yield congruent results, both qualitatively and quantitatively. They have revealed the substitution of fireweed (Epilobium angustifolium L.) by Lythrum sp. in one of the samples. It was confirmed by classic methods of botanical analysis (anatomy and palynology). In most samples, undeclared components have been detected, such as bindweed (Convolvulus) and ragweed (Ambrosia), which are known toxic and allergy-causing plants
Magnetoresistive properties of exchange biased spin valve caused by helical magnetic ordering in dysprosium layer
Spin valves containing CoFe/Dy/CoFe nanostructure as a pinned layer were prepared by magnetron sputtering. Investigations of microstructure and magnetoresistive properties were performed. The magnetoresistive properties of the spin valve were used as the instrument to study the changes in magnetic state of the dysprosium layer. The existence of noncollinear magnetic ordering in dysprosium polycrystalline nanolayer was observed. The angle between the magnetic moments in a top and bottom part of the dysprosium layer was estimated. Β© Published under licence by IOP Publishing Ltd
Microstructure and magnetoresistance of Co90Fe10/Cu and Co65Fe26Ni9/Cu multilayers
Investigations of the microstructure, magnetic and magnetotransport properties of the optimized [Co90Fe10/Cu]n and [Co65Fe26Ni9/Cu] n multilayers with n = 32 prepared by magnetron sputtering are performed. These nanostructures exhibit the magnetoresistance values 83 % and 36 % at room temperature, respectively. The article presents the results of the influence of Co65Fe26Ni9 alloy on the magnetoresistance values and crystal structure of multilayers. In the periodic part of the nanostructure [Co65Fe26Ni9/Cu] n based on CoFeNi ternary alloy, besides fcc the formation of a bcc phase in the continuous boundaries around crystallites is found. Β© Published under licence by IOP Publishing Ltd
ΠΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΡ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΌΠ°ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ Π² Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ΅ Π³Π»Π°ΡΠΊΠΎΠΌΡ. Π§Π°ΡΡΡ 1. ΠΠΎΠΏΡΠ»ΡΡΠΈΠΎΠ½Π½Π°Ρ Π²Π°ΡΠΈΠ°Π±Π΅Π»ΡΠ½ΠΎΡΡΡ ΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ°ΠΊΡΠ»Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΠΈΡΠΊΠ° Π·ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π΅ΡΠ²Π°
Purpose: To determine the nature of the relationship between the localization of the fovea, the position of the papillary-macular bundle and individual morphofunctional characteristics of the eye in patients with different eye diseases.Methods: The final protocol of work included the data of 33 people (17 women, 16 men, 46 eyes). The average age of patients was 78 (71; 81) years. All patients were divided into 3 groups: the first group consisted of 11 patients (16 eyes) with mild, moderate and advanced primary openangle glaucoma (POAG), the second β 13 patients (15 eyes) with early cataract, the third β 9 people (15 eyes) with the dry form of age-related macular degeneration (AMD). Morphometric characteristics of optic nerve head (ONH) and the retinal nerve fiber layer (RNFL), including the disk circumference measurement on the Elschnigβs ring and the papillomacular bundle (PMB) angle in relation to ONH was studied by optical coherence tomography using the Spectralis OCT device (βHeidelberg Engineeringβ, Germany). The data was statistically analyzed.Results: The PMB angle relative to the location of the ONH in patients with glaucoma equaled -7.9 (-8.2; -6.8)Β°, in patients with cataract β -7.9 (-9.7; -6.3)Β° and patients with AMD β -7.9 (-8.0; -5.4)Β°. There was no statistically significant difference in the analysis of this parameter.Conclusion: The position of fovea and the direction of PMB is a constant population value in patients with glaucoma, cataract or AMD. Foveal location is shifted, on average, 7.9Β° lower in relation to the conditional center of the ONH, which should be taken into account when analyzing the results of the RNFL study.Π¦Π΅Π»Ρ. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ Π²Π·Π°ΠΈΠΌΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°ΡΠΈΠ΅ΠΉ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΡΡ
ΠΎΡΠ΄Π΅Π»ΠΎΠ² ΡΠ΅ΡΡΠ°ΡΠΊΠΈ, ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠ°ΠΏΠΈΠ»Π»ΠΎΠΌΠ°ΠΊΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΊΠ° ΠΈ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠΌΠΈ ΠΌΠΎΡΡΠΎ- ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΌΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌΠΈ Π³Π»Π°Π·Π° Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΡΠ°Π·Π½ΡΠΌΠΈ Π³Π»Π°Π·Π½ΡΠΌΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΠΌΠΈ.ΠΠ΅ΡΠΎΠ΄Ρ. Π ΠΈΡΠΎΠ³ΠΎΠ²ΡΠΉ ΠΏΡΠΎΡΠΎΠΊΠΎΠ» ΡΠ°Π±ΠΎΡΡ Π±ΡΠ»ΠΈ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ Π΄Π°Π½Π½ΡΠ΅ 33 ΡΠ΅Π»ΠΎΠ²Π΅ΠΊ (17 ΠΆΠ΅Π½ΡΠΈΠ½, 16 ΠΌΡΠΆΡΠΈΠ½; 46 Π³Π»Π°Π·). Π‘ΡΠ΅Π΄Π½ΠΈΠΉ Π²ΠΎΠ·ΡΠ°ΡΡ Π±ΠΎΠ»ΡΠ½ΡΡ
ΡΠΎΡΡΠ°Π²ΠΈΠ» 78 (71; 81) Π»Π΅Ρ. ΠΡΠ΅ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ Π±ΡΠ»ΠΈ ΡΠ³ΡΡΠΏΠΏΠΈΡΠΎΠ²Π°Π½Ρ Π² ΡΡΠΈ Π³ΡΡΠΏΠΏΡ: 1-Ρ Π³ΡΡΠΏΠΏΡ ΡΠΎΡΡΠ°Π²ΠΈΠ»ΠΈ 11 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² (16 Π³Π»Π°Π·) Ρ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ, ΡΠ°Π·Π²ΠΈΡΠΎΠΉ ΠΈ Π΄Π°Π»Π΅ΠΊΠΎ Π·Π°ΡΠ΅Π΄ΡΠ΅ΠΉ ΡΡΠ°Π΄ΠΈΡΠΌΠΈ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠΉ ΠΎΡΠΊΡΡΡΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ Π³Π»Π°ΡΠΊΠΎΠΌΡ (ΠΠΠ£Π), Π²ΡΠΎΡΡΡ β 13 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² (15 Π³Π»Π°Π·) Ρ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠ°ΡΠ°ΡΠ°ΠΊΡΠΎΠΉ, ΡΡΠ΅ΡΡΡ β 9 ΡΠ΅Π»ΠΎΠ²Π΅ΠΊ (15 Π³Π»Π°Π·) Ρ ΡΡΡ
ΠΎΠΉ ΡΠΎΡΠΌΠΎΠΉ Π²ΠΎΠ·ΡΠ°ΡΡΠ½ΠΎΠΉ ΠΌΠ°ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ Π΄Π΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ (ΠΠΠ). ΠΠΎΡΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ Π΄ΠΈΡΠΊΠ° Π·ΡΠΈ- ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π΅ΡΠ²Π° (ΠΠΠ) ΠΈ ΡΠ»ΠΎΡ Π½Π΅ΡΠ²Π½ΡΡ
Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ ΡΠ΅ΡΡΠ°ΡΠΊΠΈ (Π‘ΠΠΠ‘), Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΠ΅ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΠΠ ΠΏΠΎ ΠΊΠΎΠ»ΡΡΡ ΠΠ»ΡΡΠ½ΠΈΠ³Π° ΠΈ ΡΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΠ°ΠΏΠΈΠ»Π»ΠΎΠΌΠ°ΠΊΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΊΠ° (ΠΠΠ) ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΠΠΠ, ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΎΠ³Π΅ΡΠ΅Π½ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠΈΠ±ΠΎΡΠ° Spectralis (Β«Heidelberg EngineeringΒ», ΠΠ΅ΡΠΌΠ°Π½ΠΈΡ). ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π½ΡΡΡ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π£Π³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΠΠ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΡΠ°Ρ- ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΠΠ Π΄Π»Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ Π³Π»Π°ΡΠΊΠΎΠΌΠΎΠΉ ΡΠΎΡΡΠ°Π²ΠΈΠ» -7,9 (-8,2; -6,8)Β°, Π΄Π»Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ ΠΊΠ°ΡΠ°ΡΠ°ΠΊΡΠΎΠΉ β -7,9 (-9,7; -6,3)Β° ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΠΠΠ β -7,9 (-8,0; -5,4)Β°. ΠΠ΅ Π±ΡΠ»ΠΎ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΡΡ
ΠΎΡΠ»ΠΈΡΠΈΠΉ ΠΏΡΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΡΡΠΎΠ³ΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ.ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΠ²Π΅Π° ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΠΠ β ΠΏΠΎΡΡΠΎΡΠ½Π½Π°Ρ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΎΠ½Π½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ Π³Π»Π°ΡΠΊΠΎΠΌΠΎΠΉ, ΠΊΠ°ΡΠ°ΡΠ°ΠΊΡΠΎΠΉ ΠΈΠ»ΠΈ ΠΠΠ. Π Π°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ°ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠΌΠ΅ΡΠ΅Π½ΠΎ Π² ΡΡΠ΅Π΄Π½Π΅ΠΌ Π½Π° 7,9Β° Π½ΠΈΠΆΠ΅ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΡΡΠ»ΠΎΠ²Π½ΠΎΠΌΡ ΡΠ΅Π½ΡΡΡ ΠΠΠ, ΡΡΠΎ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΏΡΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π΄Π°Π½Π½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π‘ΠΠΠ‘
ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ Π½Π°ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½ΡΡ ΠΎΠΏΡΡ ΠΎΠ»Π΅Π²ΡΡ ΡΠΈΠ½Π΄ΡΠΎΠΌΠΎΠ² Ρ Π½Π΅ΡΠΈΠΏΠΈΡΠ½ΡΠΌ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ: ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ»ΡΡΠ°ΠΈ
Background: Germinal pathogenic variants are the cause of the development of hereditary cancer syndromes (HCS). Various genetic tests are used for HCS detect, from the Β«frequentΒ» mutations of one or several genes analysis to the full-length gene sequence, next-generation sequencing (NGS) based panel, whole exome (WES) or whole genome sequencing (WGS).There are some HCS cases with atypical clinical manifestations and the family history does not allow one to suspect a specific HCS and limit oneself to the study of only one or a few genes. Conducting research using NGS to assess the selected sample of cancer patientβs genetic characteristics has revealed atypical HCS cases.Aim: To present the WGS diagnosis results for two atypical hereditary tumor syndromes cases.Materials and methods: DNA isolation was performed using Qiagen DNA Isolation kit.WGS for all samples was performed at DNBSEQ-T7 (MGI) and DNBSEQ-G400 (MGI) sequencing platforms using PCR-free protocol with average sample coverage 30x. A standard bioinformatics analysis pipeline was implemented for all the samples data processing.Potential clinically relevant variants were validated using Sanger sequencing. For all patients was received signed a written consent.Results: In the first case report, a pathogenic variant in the TP53 gene was identified: c. 637Cβ>βT, p. Arg213Ter, rs397516436, and LiβββFraumeni syndrome was confirmed. In the second case, we detected two pathogenic variants carrier β BRCA2: c. 6644_6647del, p. Tyr2215SerfsTer13, rs80359616 and MSH2: c. 1906Gβ>βC, p. Ala636Pro, rs63750875 associated with hereditary breast and ovarian cancer and hereditary colorectal cancer (Lynch syndrome).Conclusion: NGS, including WGS makes it easier to identify all clinically significant germline variants associated with hereditary cancer syndromes in cancer patients, as well as to trace their segregation in relatives.ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ: ΠΠ΅ΡΠΌΠΈΠ½Π°Π»ΡΠ½ΡΠ΅ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π½ΡΠ΅ Π²Π°ΡΠΈΠ°Π½ΡΡ ΡΠ²Π»ΡΡΡΡΡ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π½Π°ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΡΡ
ΡΠΈΠ½Π΄ΡΠΎΠΌΠΎΠ² (ΠΠΠ‘). ΠΠ»Ρ Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ ΠΠΠ‘ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Ρ, ΠΎΡ Π°Π½Π°Π»ΠΈΠ·Π° Β«ΡΠ°ΡΡΡΡ
Β» ΠΌΡΡΠ°ΡΠΈΠΉ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ
Π³Π΅Π½ΠΎΠ² Π΄ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΊΠ°Π½Π΄ΠΈΠ΄Π°ΡΠ½ΠΎΠ³ΠΎ Π³Π΅Π½Π°, ΠΌΡΠ»ΡΡΠΈΠ³Π΅Π½Π½ΠΎΠΉ ΠΏΠ°Π½Π΅Π»ΠΈ, ΠΏΠΎΠ»Π½ΠΎΡΠΊΠ·ΠΎΠΌΠ½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ. ΠΠ½ΠΎΠ³Π΄Π° Π²ΡΡΡΠ΅ΡΠ°ΡΡΡΡ ΡΠ»ΡΡΠ°ΠΈ Ρ Π½Π΅ΡΠΈΠΏΠΈΡΠ½ΡΠΌ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ, Π° ΡΠ΅ΠΌΠ΅ΠΉΠ½ΡΠΉ Π°Π½Π°ΠΌΠ½Π΅Π· Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ²ΠΎΠ΅Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ Π·Π°ΠΏΠΎΠ΄ΠΎΠ·ΡΠΈΡΡ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΠΉ ΠΠΠ‘ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° ΠΈ ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΡΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ
Π³Π΅Π½ΠΎΠ². ΠΠ°ΡΡΠ½ΡΠ΅ ΠΏΡΠΎΠ΅ΠΊΡΡ Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π²ΡΡΠΎΠΊΠΎΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π΄Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π²ΡΠ±ΠΎΡΠΊΠΈ ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ Π²ΡΡΠ²ΠΈΡΡ Π½Π΅ΡΠΈΠΏΠΈΡΠ½ΡΠ΅ ΡΠ»ΡΡΠ°ΠΈ ΠΠΠ‘.Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: ΠΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎ-Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ Π΄Π²ΡΡ
Π½Π΅ΡΠΈΠΏΠΈΡΠ½ΡΡ
ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ»ΡΡΠ°Π΅Π² ΠΠΠ‘.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ: ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΈΡΠΈΠ½, ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΠΈΡ
ΠΊ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΠΠ‘, Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ Π΄Π²ΡΡ
ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ»ΡΡΠ°Π΅Π². ΠΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ΅ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ΅Π°Π³Π΅Π½ΡΠΎΠ² ΠΈ ΠΎΠ±ΠΎΡΡΠ΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° MGI (ΠΠΈΡΠ°ΠΉ). ΠΠ°Π»ΠΈΠ΄Π°ΡΠΈΡ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΡΡ
Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ², ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΏΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π° ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠΎ Π‘ΡΠ½Π³Π΅ΡΡ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ: Π ΠΏΠ΅ΡΠ²ΠΎΠΌ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π²ΡΡΠ²Π»Π΅Π½ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π½ΡΠΉ Π²Π°ΡΠΈΠ°Π½Ρ Π² Π³Π΅Π½Π΅ TP53: c. 637C > T, p. Arg213Ter, rs397516436, ΠΈ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ ΡΠΈΠ½Π΄ΡΠΎΠΌ ΠΠΈ β Π€ΡΠ°ΡΠΌΠ΅Π½ΠΈ. ΠΠΎ Π²ΡΠΎΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° Π²ΡΡΠ²Π»Π΅Π½ΠΎ Π½ΠΎΡΠΈΡΠ΅Π»ΡΡΡΠ²ΠΎ Π΄Π²ΡΡ
ΠΏΠ°ΡΠΎΠ³Π΅Π½Π½ΡΡ
Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² β BRCA2: c. 6644_6647del, p. Tyr2215SerfsTer13, rs80359616 ΠΈ MSH2: c. 1906G > C, p. Ala636Pro, rs63750875, Π°ΡΡΠΎΡΠΈΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Ρ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ΠΌ Π½Π°ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ ΠΈ ΡΠΈΡΠ½ΠΈΠΊΠ° ΠΈ Π½Π°ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»ΠΎΡΠ΅ΠΊΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΠΊΠ° (ΡΠΈΠ½Π΄ΡΠΎΠΌ ΠΠΈΠ½ΡΠ°).ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅: ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°ΡΡΠΈΡΠ΅Π½Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π²ΡΡΠ²ΠΈΡΡ Π²ΡΠ΅ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΡΠ΅ Π³Π΅ΡΠΌΠΈΠ½Π°Π»ΡΠ½ΡΠ΅ Π²Π°ΡΠΈΠ°Π½ΡΡ, Π°ΡΡΠΎΡΠΈΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ Ρ ΠΠΠ‘, Ρ ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΎΡΠ»Π΅Π΄ΠΈΡΡ ΠΈΡ
ΡΠ΅Π³ΡΠ΅Π³Π°ΡΠΈΡ Ρ ΡΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΠΈΠΊΠΎΠ²
ΠΠ»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ Π² ΡΠΎΡΡΠ°Π²Π΅ ΡΠΈΠ½Π΄ΡΠΎΠΌΠ° ΠΠΎΡΠ΄Π΅Π½Π°
Cowden syndrome is a rare disease characterized by multiple hamartomas and increased breast, thyroid, kidney and uterine neoplasm risk. The lifetime breast cancer risk for patients with Cowden syndrome is 85β%, with an average age of diagnosis between 38 and 46 years. The diagnostic criteria for Cowden syndrome have been established by the International Cowden Consortium (ICC) and the National Comprehensive Cancer Network (NCCN), and are regularly revised, but the diagnosis of Cowden syndrome remains difficult due to the variety of phenotypic and clinical features of the disease. At the same time, the genetic variants associated with Cowden syndrome analysis is not a standard for patients with breast cancer.Objective: To demonstrate the nonβBRCA hereditary breast cancer detection using whole genome sequencing on the Cowden syndrome clinical case example.Materials and methods: The article describes a clinical case of a 37βyearβold female patient with breast cancer, normal intelligence and phenotype, structural abnormalities of the thyroid gland (multinodular goiter). Whole genome sequencing was used to identify clinically significant genetic variants associated with hereditary tumor syndromes.Clinical case: The article presents a brief literature review on the clinical presentation of Cowden syndrome and indications for its molecular diagnosis. Also, the presented clinical case describes patient R., 37 years old female with breast cancer, who underwent treatment in the City Clinical Oncological Hospital ββ1 of the Moscow City Health Department in 2021. The patient was fully examined and enrolled in the whole genome sequencing project under the Order β 69 of Moscow Healthcare Department dated February 1, 2021 Β«Oncogenetic research organization in MoscowΒ». The results revealed a pathogenic variant in the PTEN gene, previously associated with Cowden syndrome.Conclusion: The use of whole genome sequencing allows to identify hereditary tumor syndromes, the clinical manifestation of which may be breast cancer.Π‘ΠΈΠ½Π΄ΡΠΎΠΌ ΠΠΎΡΠ΄Π΅Π½Π° Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ Π½Π°Π»ΠΈΡΠΈΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
Π³Π°ΠΌΠ°ΡΡΠΎΠΌ Ρ Π²ΡΡΠΎΠΊΠΈΠΌ ΡΠΈΡΠΊΠΎΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π΄ΠΎΠ±ΡΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΈ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅ΠΉ ΡΠΈΡΠΎΠ²ΠΈΠ΄Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ, ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ, ΠΏΠΎΡΠ΅ΠΊ ΠΈ ΡΠ½Π΄ΠΎΠΌΠ΅ΡΡΠΈΡ. Π ΠΈΡΠΊ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠ°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΡΠΈΠ½Π΄ΡΠΎΠΌΠΎΠΌ ΠΠΎΡΠ΄Π΅Π½Π° Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΆΠΈΠ·Π½ΠΈ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 85 %, ΠΏΡΠΈ ΡΡΠΎΠΌ ΡΡΠ΅Π΄Π½ΠΈΠΉ Π²ΠΎΠ·ΡΠ°ΡΡ ΠΏΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π° ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΎΡ 38 Π΄ΠΎ 46 Π»Π΅Ρ. ΠΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΡΠΈΡΠ΅ΡΠΈΠΈ ΡΠΈΠ½Π΄ΡΠΎΠΌΠ° ΠΠΎΡΠ΄Π΅Π½Π° ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ ΠΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΠΌ ΠΊΠΎΠ½ΡΠΎΡΡΠΈΡΠΌΠΎΠΌ ΠΏΠΎ ΡΠΈΠ½Π΄ΡΠΎΠΌΡ ΠΠΎΡΠ΄Π΅Π½Π° (ICC) ΠΈ ΠΠΌΠ΅ΡΠΈΠΊΠ°Π½ΡΠΊΠΎΠΉ Π°ΡΡΠΎΡΠΈΠ°ΡΠΈΠ΅ΠΉ ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΎΠ² (NCCN) ΠΈ ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π°ΡΡΡΡ ΡΠ΅Π³ΡΠ»ΡΡΠ½ΠΎΠΌΡ ΠΏΠ΅ΡΠ΅ΡΠΌΠΎΡΡΡ, ΠΎΠ΄Π½Π°ΠΊΠΎ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ° ΡΠΈΠ½Π΄ΡΠΎΠΌΠ° ΠΠΎΡΠ΄Π΅Π½Π° ΠΏΠΎβΠΏΡΠ΅ΠΆΠ½Π΅ΠΌΡ Π·Π°ΡΡΡΠ΄Π½Π΅Π½Π° Π²Π²ΠΈΠ΄Ρ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·ΠΈΡ ΡΠ΅Π½ΠΎΡΠΈΠΏΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΠΈ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. Π ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ, Π°Π½Π°Π»ΠΈΠ· Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ², Π°ΡΡΠΎΡΠΈΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Ρ ΡΠΈΠ½Π΄ΡΠΎΠΌΠΎΠΌ ΠΠΎΡΠ΄Π΅Π½Π°, Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ°Π½Π΄Π°ΡΡΠΎΠΌ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΈ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ΅ ΡΠ°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ.Π¦Π΅Π»Ρ: ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°ΡΡ Π²ΡΡΠ²Π»Π΅Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½Π°ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΡΡ
ΡΠΈΠ½Π΄ΡΠΎΠΌΠΎΠ², ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΡΠΎΡΡΡ
ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ, Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΡΠΈΠ½Π΄ΡΠΎΠΌΠ° ΠΠΎΡΠ΄Π΅Π½Π°.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ: Π² ΡΡΠ°ΡΡΠ΅ ΠΎΠΏΠΈΡΠ°Π½ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ»ΡΡΠ°ΠΉ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΊΠΈ 37 Π»Π΅Ρ Ρ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΡΠΌ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΠΎΠΌ ΠΈ ΡΠ΅Π½ΠΎΡΠΈΠΏΠΎΠΌ, ΡΡΡΡΠΊΡΡΡΠ½ΡΠΌΠΈ ΠΏΠΎΡΠ°ΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΡΠΈΡΠΎΠ²ΠΈΠ΄Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ (ΠΌΠ½ΠΎΠ³ΠΎΡΠ·Π»ΠΎΠ²ΠΎΠΉ Π·ΠΎΠ±), ΠΎΠ±ΡΠ°ΡΠΈΠ²ΡΠ΅ΠΉΡΡ ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρ ΡΠ°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ. Π ΡΠ°ΠΌΠΊΠ°Ρ
Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Ρ ΡΠ΅Π»ΡΡ Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΡΡ
Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ², Π°ΡΡΠΎΡΠΈΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Ρ Π½Π°ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΡΠΌΠΈ ΡΠΈΠ½Π΄ΡΠΎΠΌΠ°ΠΌΠΈ, ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ ΠΌΠ΅ΡΠΎΠ΄ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ.ΠΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ»ΡΡΠ°ΠΉ: Π² ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ ΠΊΡΠ°ΡΠΊΠΈΠΉ ΠΎΠ±Π·ΠΎΡ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ, ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π½ΡΠΉ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ΅ ΡΠΈΠ½Π΄ΡΠΎΠΌΠ° ΠΠΎΡΠ΄Π΅Π½Π°, ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠΉ Π΄Π»Ρ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ. ΠΠΏΠΈΡΠ°Π½ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ»ΡΡΠ°ΠΉ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΊΠΈ Π ., 37 Π»Π΅Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠΎΡ
ΠΎΠ΄ΠΈΠ»Π° Π»Π΅ΡΠ΅Π½ΠΈΠ΅ Π² ΠΠΠ£Π Β«ΠΠΎΡΠΎΠ΄ΡΠΊΠ°Ρ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠ°Ρ Π±ΠΎΠ»ΡΠ½ΠΈΡΠ° β 1 ΠΠΠΒ» Π² 2021 Π³. ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρ ΡΠ°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ. Π‘ ΡΡΠ΅ΡΠΎΠΌ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π² Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ Π΄ΠΎ 50 Π»Π΅Ρ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΊΠ° Π²ΠΊΠ»ΡΡΠ΅Π½Π° Π² Π½Π°ΡΡΠ½ΡΠΉ ΠΏΡΠΎΠ΅ΠΊΡ ΠΏΠΎ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΠΏΡΠΈΠΊΠ°Π·Π° ΠΠ΅ΠΏΠ°ΡΡΠ°ΠΌΠ΅Π½ΡΠ° ΠΠ΄ΡΠ°Π²ΠΎΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΡ Π³. ΠΠΎΡΠΊΠ²Ρ β 69 ΠΎΡ 01.02.2021 Β«ΠΠ± ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΎΠ½ΠΊΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π² Π³ΠΎΡΠΎΠ΄Π΅ ΠΠΎΡΠΊΠ²Π΅Β», ΠΏΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π²ΡΡΠ²Π»Π΅Π½ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π½ΡΠΉ Π²Π°ΡΠΈΠ°Π½Ρ Π³Π΅Π½Π° PTEN, Π°ΡΡΠΎΡΠΈΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ Ρ ΡΠΈΠ½Π΄ΡΠΎΠΌΠΎΠΌ ΠΠΎΡΠ΄Π΅Π½Π°.ΠΡΠ²ΠΎΠ΄: ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π²ΡΡΠ²Π»ΡΡΡ Π½Π°ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΡΠ΅ ΡΠΈΠ½Π΄ΡΠΎΠΌΡ, ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΡΠΎΡΡΡ
ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ