49 research outputs found

    Scorzonera sensu lato (Asteraceae, Cichorieae) – taxonomic reassessment in the light of new molecular phylogenetic and carpological analyses

    Get PDF
    Scorzonera comprises 180–190 species and belongs to the subtribe Scorzonerinae. Its circumscription has long been the subject of debate and available molecular phylogenetic analyses affirmed the polyphyly of Scorzonera in its wide sense. We provide a re-evaluation of Scorzonera and other related genera, based on carpological (including anatomical) and extended molecular phylogenetic analyses. We present, for the first time, a comprehensive sampling, including Scorzonera in its widest sense and all other genera recognised in the Scorzonerinae. We conducted phylogenetic analyses using Maximum Parsimony, Maximum Likelihood and Bayesian analyses, based on sequences of the nuclear ribosomal ITS and of two plastid markers (partial rbcL and matK) and Maximum Parsimony for reconstructing the carpological character states at ancestral nodes. Achene characters, especially related to pericarp anatomy, such as general topography of the tissue types, disposition of the mechanical tissue and direction of its fibres, presence or absence of air cavities, provide, in certain cases, support for the phylogenetic lineages revealed. Confirming the polyphyly of Scorzonera, we propose a revised classification of the subtribe, accepting the genera Scorzonera (including four major clades: Scorzonera s. str., S. purpurea, S. albicaulis and Podospermum), Gelasia, Lipschitzia gen. nov. (for the Scorzonera divaricata clade), Pseudopodospermum, Pterachaenia (also including Scorzonera codringtonii), Ramaliella gen. nov. (for the S. polyclada clade) and Takhtajaniantha. A key to the revised genera and a characterisation of the genera and major clades are provided

    Phylogeny, biogeography and systematics of Dysphanieae (Amaranthaceae)

    Get PDF
    After a rather turbulent taxonomic history, Dysphanieae (Chenopodioideae, Amaranthaceae) were established to contain five genera, four of which are monospecific (Cycloloma, Neomonolepis, Suckleya, Teloxys) and geographically restricted, and the fifth genus, Dysphania, having a nearly worldwide distribution and comprising ca. 50 species. This study investigates the phylogeny, biogeography and taxonomy of Dysphanieae. We studied specimens from 32 herbaria to infer morphological differences and distribution areas of the species and sampled 121 accessions representing 39 accepted species of the tribe for molecular phylogenetic analyses. The molecular phylogeny tested generic relationships of the tribe and infrageneric relationships of Dysphania on the basis of two plastid DNA markers (atpB-rbcL spacer, rpl16 intron) and two nuclear ribosomal markers (ETS, ITS) and was also used for an ancestral area reconstruction with BioGeoBEARS. Three of the monospecific genera (Neomonolepis, Suckleya, Teloxys) form a basal grade and appear to be relictual lineages of the tribe, while Cycloloma is nested within Dysphania. The ancestral area reconstruction favors a widespread ancestry for Dysphanieae, and the relictual lineages in Asia (Teloxys) and North America (Neomonolepis, Suckleya) might be explained by a wide distribution across Beringia during the Late Oligocene/Early Miocene. Dysphania likely originated in North America; however, the simultaneous diversification into three major clades, an Asian/African, an American and an Australian/African clade, indicates a widespread ancestor at the crown node of Dysphania. Our taxonomic revision results in four accepted genera in Dysphanieae, Dysphania, Neomonolepis, Suckleya and Teloxys. The sectional subdivision for Dysphania is revised. We subdivide the genus into five sections, D. sect. Adenois (13 spp.), D. sect. Botryoides (10 spp.), D. sect. Dysphania (17 spp.), D. sect. Incisa (2 spp.) and D. sect. Margaritaria (4 spp.); three strongly deviating species remain unplaced and need further attention.Peer reviewe

    Comparative analysis of Illumina and Ion Torrent high-throughput sequencing platforms for identification of plant components in herbal teas

    Get PDF
    Β© 2018 Elsevier Ltd The rapid development of high-throughput sequencing (HTS) methods offers new opportunities for food quality control and identification of food components using the DNA barcoding approach (metabarcoding in cases of complex mixes). However, the protocols of DNA barcoding applied to food analysis are not yet fully established; testing and optimization are required to achieve the highest accuracy and cost efficiency. We report here a comparative study of the two most widely used sequencing platforms - Illumina and Ion Torrent - for composition analysis of herbal teas, and show that both technologies yield congruent results, both qualitatively and quantitatively. They have revealed the substitution of fireweed (Epilobium angustifolium L.) by Lythrum sp. in one of the samples. It was confirmed by classic methods of botanical analysis (anatomy and palynology). In most samples, undeclared components have been detected, such as bindweed (Convolvulus) and ragweed (Ambrosia), which are known toxic and allergy-causing plants

    Magnetoresistive properties of exchange biased spin valve caused by helical magnetic ordering in dysprosium layer

    Full text link
    Spin valves containing CoFe/Dy/CoFe nanostructure as a pinned layer were prepared by magnetron sputtering. Investigations of microstructure and magnetoresistive properties were performed. The magnetoresistive properties of the spin valve were used as the instrument to study the changes in magnetic state of the dysprosium layer. The existence of noncollinear magnetic ordering in dysprosium polycrystalline nanolayer was observed. The angle between the magnetic moments in a top and bottom part of the dysprosium layer was estimated. Β© Published under licence by IOP Publishing Ltd

    Microstructure and magnetoresistance of Co90Fe10/Cu and Co65Fe26Ni9/Cu multilayers

    Full text link
    Investigations of the microstructure, magnetic and magnetotransport properties of the optimized [Co90Fe10/Cu]n and [Co65Fe26Ni9/Cu] n multilayers with n = 32 prepared by magnetron sputtering are performed. These nanostructures exhibit the magnetoresistance values 83 % and 36 % at room temperature, respectively. The article presents the results of the influence of Co65Fe26Ni9 alloy on the magnetoresistance values and crystal structure of multilayers. In the periodic part of the nanostructure [Co65Fe26Ni9/Cu] n based on CoFeNi ternary alloy, besides fcc the formation of a bcc phase in the continuous boundaries around crystallites is found. Β© Published under licence by IOP Publishing Ltd

    Π˜Π½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΡ клиничСских Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ макулярной области Π² диагностикС Π³Π»Π°ΡƒΠΊΠΎΠΌΡ‹. Π§Π°ΡΡ‚ΡŒ 1. ΠŸΠΎΠΏΡƒΠ»ΡΡ†ΠΈΠΎΠ½Π½Π°Ρ Π²Π°Ρ€ΠΈΠ°Π±Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ позиционирования ΠΌΠ°ΠΊΡƒΠ»Ρ‹ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ диска Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π½Π΅Ρ€Π²Π°

    Get PDF
    Purpose: To determine the nature of the relationship between the localization of the fovea, the position of the papillary-macular bundle and individual morphofunctional characteristics of the eye in patients with different eye diseases.Methods: The final protocol of work included the data of 33 people (17 women, 16 men, 46 eyes). The average age of patients was 78 (71; 81) years. All patients were divided into 3 groups: the first group consisted of 11 patients (16 eyes) with mild, moderate and advanced primary openangle glaucoma (POAG), the second β€” 13 patients (15 eyes) with early cataract, the third β€” 9 people (15 eyes) with the dry form of age-related macular degeneration (AMD). Morphometric characteristics of optic nerve head (ONH) and the retinal nerve fiber layer (RNFL), including the disk circumference measurement on the Elschnig’s ring and the papillomacular bundle (PMB) angle in relation to ONH was studied by optical coherence tomography using the Spectralis OCT device (β€œHeidelberg Engineering”, Germany). The data was statistically analyzed.Results: The PMB angle relative to the location of the ONH in patients with glaucoma equaled -7.9 (-8.2; -6.8)Β°, in patients with cataract β€” -7.9 (-9.7; -6.3)Β° and patients with AMD β€” -7.9 (-8.0; -5.4)Β°. There was no statistically significant difference in the analysis of this parameter.Conclusion: The position of fovea and the direction of PMB is a constant population value in patients with glaucoma, cataract or AMD. Foveal location is shifted, on average, 7.9Β° lower in relation to the conditional center of the ONH, which should be taken into account when analyzing the results of the RNFL study.ЦСль. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ Π²Π·Π°ΠΈΠΌΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΡ‚Π΄Π΅Π»ΠΎΠ² сСтчатки, ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ папилломакулярного ΠΏΡƒΡ‡ΠΊΠ° ΠΈ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΌΠΎΡ€Ρ„ΠΎ- Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ характСристиками Π³Π»Π°Π·Π° Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ Π³Π»Π°Π·Π½Ρ‹ΠΌΠΈ заболСваниями.ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ ΠΈΡ‚ΠΎΠ³ΠΎΠ²Ρ‹ΠΉ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ» Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΈ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ Π΄Π°Π½Π½Ρ‹Π΅ 33 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ (17 ΠΆΠ΅Π½Ρ‰ΠΈΠ½, 16 ΠΌΡƒΠΆΡ‡ΠΈΠ½; 46 Π³Π»Π°Π·). Π‘Ρ€Π΅Π΄Π½ΠΈΠΉ возраст Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… составил 78 (71; 81) Π»Π΅Ρ‚. ВсС ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ Π±Ρ‹Π»ΠΈ сгруппированы Π² Ρ‚Ρ€ΠΈ Π³Ρ€ΡƒΠΏΠΏΡ‹: 1-ю Π³Ρ€ΡƒΠΏΠΏΡƒ составили 11 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² (16 Π³Π»Π°Π·) с Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ, Ρ€Π°Π·Π²ΠΈΡ‚ΠΎΠΉ ΠΈ Π΄Π°Π»Π΅ΠΊΠΎ зашСдшСй стадиями ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Π»Π°ΡƒΠΊΠΎΠΌΡ‹ (ΠŸΠžΠ£Π“), Π²Ρ‚ΠΎΡ€ΡƒΡŽ β€” 13 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² (15 Π³Π»Π°Π·) с Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠ°Ρ‚Π°Ρ€Π°ΠΊΡ‚ΠΎΠΉ, Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ β€” 9 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ (15 Π³Π»Π°Π·) с сухой Ρ„ΠΎΡ€ΠΌΠΎΠΉ возрастной макулярной Π΄Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ (Π’ΠœΠ”). ΠœΠΎΡ€Ρ„ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ характСристики диска Π·Ρ€ΠΈ- Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π½Π΅Ρ€Π²Π° (ДЗН) ΠΈ слоя Π½Π΅Ρ€Π²Π½Ρ‹Ρ… Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ сСтчатки (БНВБ), Π² Ρ‚ΠΎΠΌ числС Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ окруТности ДЗН ΠΏΠΎ ΠΊΠΎΠ»ΡŒΡ†Ρƒ Эльшнига ΠΈ ΡƒΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° папилломакулярного ΠΏΡƒΡ‡ΠΊΠ° (ПМП) ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ ДЗН, исслСдовались ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ оптичСской ΠΊΠΎΠ³Π΅Ρ€Π΅Π½Ρ‚Π½ΠΎΠΉ Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ с использованиСм ΠΏΡ€ΠΈΠ±ΠΎΡ€Π° Spectralis (Β«Heidelberg EngineeringΒ», ГСрмания). ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π½ΡƒΡ‚Ρ‹ статистичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π£Π³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ПМП ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ рас- полоТСнию ДЗН для Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с Π³Π»Π°ΡƒΠΊΠΎΠΌΠΎΠΉ составил -7,9 (-8,2; -6,8)Β°, для Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с ΠΊΠ°Ρ‚Π°Ρ€Π°ΠΊΡ‚ΠΎΠΉ β€” -7,9 (-9,7; -6,3)Β° ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π’ΠœΠ” β€” -7,9 (-8,0; -5,4)Β°. НС Π±Ρ‹Π»ΠΎ установлСно статистичСски достовСрных ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠΉ ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ этого показатСля.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ПолоТСниС Ρ„ΠΎΠ²Π΅Π° ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ПМП β€” постоянная популяционная Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с Π³Π»Π°ΡƒΠΊΠΎΠΌΠΎΠΉ, ΠΊΠ°Ρ‚Π°Ρ€Π°ΠΊΡ‚ΠΎΠΉ ΠΈΠ»ΠΈ Π’ΠœΠ”. РасполоТСниС макулярной области смСщСно Π² срСднСм Π½Π° 7,9Β° Π½ΠΈΠΆΠ΅ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ условному Ρ†Π΅Π½Ρ‚Ρ€Ρƒ ДЗН, Ρ‡Ρ‚ΠΎ слСдуСт ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Π΄Π°Π½Π½Ρ‹Ρ… исслСдования БНВБ

    ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ диагностики наслСдствСнных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… синдромов с Π½Π΅Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹ΠΌ проявлСниСм: клиничСскиС случаи

    Get PDF
    Background: Germinal pathogenic variants are the cause of the development of hereditary cancer syndromes (HCS). Various genetic tests are used for HCS detect, from the Β«frequentΒ» mutations of one or several genes analysis to the full-length gene sequence, next-generation sequencing (NGS) based panel, whole exome (WES) or whole genome sequencing (WGS).There are some HCS cases with atypical clinical manifestations and the family history does not allow one to suspect a specific HCS and limit oneself to the study of only one or a few genes. Conducting research using NGS to assess the selected sample of cancer patient’s genetic characteristics has revealed atypical HCS cases.Aim: To present the WGS diagnosis results for two atypical hereditary tumor syndromes cases.Materials and methods: DNA isolation was performed using Qiagen DNA Isolation kit.WGS for all samples was performed at DNBSEQ-T7 (MGI) and DNBSEQ-G400 (MGI) sequencing platforms using PCR-free protocol with average sample coverage 30x. A standard bioinformatics analysis pipeline was implemented for all the samples data processing.Potential clinically relevant variants were validated using Sanger sequencing. For all patients was received signed a written consent.Results: In the first case report, a pathogenic variant in the TP53 gene was identified: c. 637C > T, p. Arg213Ter, rs397516436, and Liβ€Šβ€“β€ŠFraumeni syndrome was confirmed. In the second case, we detected two pathogenic variants carrier β€” BRCA2: c. 6644_6647del, p. Tyr2215SerfsTer13, rs80359616 and MSH2: c. 1906G > C, p. Ala636Pro, rs63750875 associated with hereditary breast and ovarian cancer and hereditary colorectal cancer (Lynch syndrome).Conclusion: NGS, including WGS makes it easier to identify all clinically significant germline variants associated with hereditary cancer syndromes in cancer patients, as well as to trace their segregation in relatives.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ: Π“Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ развития наслСдствСнных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… синдромов (НОБ). Для выявлСния НОБ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹, ΠΎΡ‚ Π°Π½Π°Π»ΠΈΠ·Π° «частых» ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π³Π΅Π½ΠΎΠ² Π΄ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ сСквСнирования ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚Π½ΠΎΠ³ΠΎ Π³Π΅Π½Π°, ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠ³Π΅Π½Π½ΠΎΠΉ ΠΏΠ°Π½Π΅Π»ΠΈ, полноэкзомного ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ сСквСнирования. Иногда Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ случаи с Π½Π΅Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹ΠΌ клиничСским проявлСниСм, Π° сСмСйный Π°Π½Π°ΠΌΠ½Π΅Π· Π½Π΅ позволяСт своСврСмСнно Π·Π°ΠΏΠΎΠ΄ΠΎΠ·Ρ€ΠΈΡ‚ΡŒ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹ΠΉ НОБ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° ΠΈ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΡ‚ΡŒΡΡ исслСдованиСм ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π³Π΅Π½ΠΎΠ². НаучныС ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Ρ‹ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ‹ΡΠΎΠΊΠΎΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ сСквСнирования для ΠΎΡ†Π΅Π½ΠΊΠΈ гСнСтичСских особСнностСй ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ онкологичСских ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ Π½Π΅Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹Π΅ случаи НОБ.ЦСль исслСдования: ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ клиничСскоС описаниС ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ молСкулярно-гСнСтичСской диагностики Π΄Π²ΡƒΡ… Π½Π΅Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹Ρ… клиничСских случаСв НОБ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ молСкулярной диагностики гСнСтичСских ΠΏΡ€ΠΈΡ‡ΠΈΠ½, приводящих ΠΊ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ НОБ, Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Π΄Π²ΡƒΡ… клиничСских случаСв. ПолногСномноС сСквСнированиС ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ с использованиСм Ρ€Π΅Π°Π³Π΅Π½Ρ‚ΠΎΠ² ΠΈ оборудования производства MGI (ΠšΠΈΡ‚Π°ΠΉ). Валидация клиничСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ сСквСнирования, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° сСквСнированиСм ΠΏΠΎ БэнгСру.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: Π’ ΠΏΠ΅Ρ€Π²ΠΎΠΌ клиничСском случаС выявлСн ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹ΠΉ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ Π² Π³Π΅Π½Π΅ TP53: c. 637C > T, p. Arg213Ter, rs397516436, ΠΈ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ синдром Π›ΠΈ – Π€Ρ€Π°ΡƒΠΌΠ΅Π½ΠΈ. Π’ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ случаС Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° выявлСно Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π΄Π²ΡƒΡ… ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² β€” BRCA2: c. 6644_6647del, p. Tyr2215SerfsTer13, rs80359616 ΠΈ MSH2: c. 1906G > C, p. Ala636Pro, rs63750875, ассоциированных с Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ наслСдствСнного Ρ€Π°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ ΠΈ яичника ΠΈ наслСдствСнного ΠΊΠΎΠ»ΠΎΡ€Π΅ΠΊΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ° (синдром Π›ΠΈΠ½Ρ‡Π°).Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅: ИспользованиС Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² гСнСтичСского тСстирования, Π² Ρ‚ΠΎΠΌ числС ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ сСквСнирования позволяСт Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ всС клиничСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Π΅ Π³Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹, ассоциированныС с НОБ, Ρƒ онкологичСских ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΎΡΠ»Π΅Π΄ΠΈΡ‚ΡŒ ΠΈΡ… ΡΠ΅Π³Ρ€Π΅Π³Π°Ρ†ΠΈΡŽ Ρƒ родствСнников

    ЗлокачСствСнноС Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ Π² составС синдрома ΠšΠΎΡƒΠ΄Π΅Π½Π°

    Get PDF
    Cowden syndrome is a rare disease characterized by multiple hamartomas and increased breast, thyroid, kidney and uterine neoplasm risk. The lifetime breast cancer risk for patients with Cowden syndrome is 85β€Š%, with an average age of diagnosis between 38 and 46 years. The diagnostic criteria for Cowden syndrome have been established by the International Cowden Consortium (ICC) and the National Comprehensive Cancer Network (NCCN), and are regularly revised, but the diagnosis of Cowden syndrome remains difficult due to the variety of phenotypic and clinical features of the disease. At the same time, the genetic variants associated with Cowden syndrome analysis is not a standard for patients with breast cancer.Objective: To demonstrate the non‑BRCA hereditary breast cancer detection using whole genome sequencing on the Cowden syndrome clinical case example.Materials and methods: The article describes a clinical case of a 37‑year‑old female patient with breast cancer, normal intelligence and phenotype, structural abnormalities of the thyroid gland (multinodular goiter). Whole genome sequencing was used to identify clinically significant genetic variants associated with hereditary tumor syndromes.Clinical case: The article presents a brief literature review on the clinical presentation of Cowden syndrome and indications for its molecular diagnosis. Also, the presented clinical case describes patient R., 37 years old female with breast cancer, who underwent treatment in the City Clinical Oncological Hospital № 1 of the Moscow City Health Department in 2021. The patient was fully examined and enrolled in the whole genome sequencing project under the Order β„– 69 of Moscow Healthcare Department dated February 1, 2021 Β«Oncogenetic research organization in MoscowΒ». The results revealed a pathogenic variant in the PTEN gene, previously associated with Cowden syndrome.Conclusion: The use of whole genome sequencing allows to identify hereditary tumor syndromes, the clinical manifestation of which may be breast cancer.Π‘ΠΈΠ½Π΄Ρ€ΠΎΠΌ ΠšΠΎΡƒΠ΄Π΅Π½Π° характСризуСтся Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ΠΌ мноТСствСнных Π³Π°ΠΌΠ°Ρ€Ρ‚ΠΎΠΌ с высоким риском развития доброкачСствСнных ΠΈ злокачСствСнных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ Ρ‰ΠΈΡ‚ΠΎΠ²ΠΈΠ΄Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹, ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹, ΠΏΠΎΡ‡Π΅ΠΊ ΠΈ эндомСтрия. Риск развития Ρ€Π°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с синдромом ΠšΠΎΡƒΠ΄Π΅Π½Π° Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΆΠΈΠ·Π½ΠΈ составляСт 85 %, ΠΏΡ€ΠΈ этом срСдний возраст постановки Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π° составляСт ΠΎΡ‚ 38 Π΄ΠΎ 46 Π»Π΅Ρ‚. ДиагностичСскиС ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ синдрома ΠšΠΎΡƒΠ΄Π΅Π½Π° установлСны ΠœΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½Ρ‹ΠΌ консорциумом ΠΏΠΎ синдрому ΠšΠΎΡƒΠ΄Π΅Π½Π° (ICC) ΠΈ АмСриканской ассоциациСй ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΎΠ² (NCCN) ΠΈ ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°ΡŽΡ‚ΡΡ рСгулярному пСрСсмотру, ΠΎΠ΄Π½Π°ΠΊΠΎ диагностика синдрома ΠšΠΎΡƒΠ΄Π΅Π½Π° по‑прСТнСму Π·Π°Ρ‚Ρ€ΡƒΠ΄Π½Π΅Π½Π° Π²Π²ΠΈΠ΄Ρƒ разнообразия фСнотипичСских особСнностСй ΠΈ клиничСских ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя, Π°Π½Π°Π»ΠΈΠ· гСнСтичСских Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ², ассоциированных с синдромом ΠšΠΎΡƒΠ΄Π΅Π½Π°, Π½Π΅ являСтся стандартом обслСдования ΠΏΡ€ΠΈ диагностикС Ρ€Π°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹.ЦСль: ΠΏΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ выявлСниС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ сСквСнирования наслСдствСнных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… синдромов, клиничСским проявлСниСм ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ злокачСствСнныС новообразования ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹, Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ синдрома ΠšΠΎΡƒΠ΄Π΅Π½Π°.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ описан клиничСский случай ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΊΠΈ 37 Π»Π΅Ρ‚ с Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΠΎΠΌ ΠΈ Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠΎΠΌ, структурными пораТСниями Ρ‰ΠΈΡ‚ΠΎΠ²ΠΈΠ΄Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ (ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ·Π»ΠΎΠ²ΠΎΠΉ Π·ΠΎΠ±), ΠΎΠ±Ρ€Π°Ρ‚ΠΈΠ²ΡˆΠ΅ΠΉΡΡ ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρƒ Ρ€Π°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹. Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… Π½Π°ΡƒΡ‡Π½ΠΎΠ³ΠΎ исслСдования с Ρ†Π΅Π»ΡŒΡŽ выявлСния клиничСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Ρ… гСнСтичСских Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ², ассоциированных с наслСдствСнными ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹ΠΌΠΈ синдромами, ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ сСквСнирования.ΠšΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ случай: Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСн ΠΊΡ€Π°Ρ‚ΠΊΠΈΠΉ ΠΎΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹, посвящСнный клиничСской характСристикС синдрома ΠšΠΎΡƒΠ΄Π΅Π½Π°, ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠΉ для молСкулярной диагностики. Описан клиничСский случай ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΊΠΈ Π ., 37 Π»Π΅Ρ‚, которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΠ»Π° Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π² Π“Π‘Π£Π— «Городская клиничСская онкологичСская Π±ΠΎΠ»ΡŒΠ½ΠΈΡ†Π° β„– 1 Π”Π—ΠœΒ» Π² 2021 Π³. ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρƒ Ρ€Π°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹. Π‘ ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ диагностированного Π² возрастС Π΄ΠΎ 50 Π»Π΅Ρ‚ злокачСствСнного новообразования ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΊΠ° Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Π° Π² Π½Π°ΡƒΡ‡Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ ΠΏΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡŽ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½Ρ‹Ρ… исслСдований Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΏΡ€ΠΈΠΊΠ°Π·Π° Π”Π΅ΠΏΠ°Ρ€Ρ‚Π°ΠΌΠ΅Π½Ρ‚Π° ЗдравоохранСния Π³. ΠœΠΎΡΠΊΠ²Ρ‹ β„– 69 ΠΎΡ‚ 01.02.2021 «Об ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ провСдСния онкогСнСтичСских исслСдований Π² Π³ΠΎΡ€ΠΎΠ΄Π΅ МосквС», ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ гСнСтичСского исслСдования выявлСн ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹ΠΉ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ Π³Π΅Π½Π° PTEN, ассоциированный с синдромом ΠšΠΎΡƒΠ΄Π΅Π½Π°.Π’Ρ‹Π²ΠΎΠ΄: ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ сСквСнирования позволяСт Π²Ρ‹ΡΠ²Π»ΡΡ‚ΡŒ наслСдствСнныС ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ синдромы, клиничСским проявлСниСм ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ злокачСствСнныС новообразования ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹
    corecore