60 research outputs found

    The effects of medieval dams on genetic divergence and demographic history in brown trout populations

    Get PDF
    BACKGROUND: Habitat fragmentation has accelerated within the last century, but may have been ongoing over longer time scales. We analyzed the timing and genetic consequences of fragmentation in two isolated lake-dwelling brown trout populations. They are from the same river system (the Gudenå River, Denmark) and have been isolated from downstream anadromous trout by dams established ca. 600–800 years ago. For reference, we included ten other anadromous populations and two hatchery strains. Based on analysis of 44 microsatellite loci we investigated if the lake populations have been naturally genetically differentiated from anadromous trout for thousands of years, or have diverged recently due to the establishment of dams. RESULTS: Divergence time estimates were based on 1) Approximate Bayesian Computation and 2) a coalescent-based isolation-with-gene-flow model. Both methods suggested divergence times ca. 600–800 years bp, providing strong evidence for establishment of dams in the Medieval as the factor causing divergence. Bayesian cluster analysis showed influence of stocked trout in several reference populations, but not in the focal lake and anadromous populations. Estimates of effective population size using a linkage disequilibrium method ranged from 244 to > 1,000 in all but one anadromous population, but were lower (153 and 252) in the lake populations. CONCLUSIONS: We show that genetic divergence of lake-dwelling trout in two Danish lakes reflects establishment of water mills and impassable dams ca. 600–800 years ago rather than a natural genetic population structure. Although effective population sizes of the two lake populations are not critically low they may ultimately limit response to selection and thereby future adaptation. Our results demonstrate that populations may have been affected by anthropogenic disturbance over longer time scales than normally assumed

    Using a Crop Model to Benchmark Miscanthus and Switchgrass

    Get PDF
    Crop yields are important items in the economic performance and the environmental impacts of second-generation biofuels. Since they strongly depend on crop management and pedoclimatic conditions, it is important to compare candidate feedstocks to select the most appropriate crops in a given context. Agro-ecosystem models offer a prime route to benchmark crops, but have been little tested from this perspective thus far. Here, we tested whether an agro-ecosystem model (CERES-EGC) was specific enough to capture the differences between miscanthus and switchgrass in northern Europe. The model was compared to field observations obtained in seven long-term trials in France and the UK, involving different fertilizer input rates and harvesting dates. At the calibration site (Estrées-Mons), the mean deviations between simulated and observed crop biomass yields for miscanthus varied between −0.3 t DM ha−1 and 4.2 t DM ha−1. For switchgrass, simulated yields were within 1.0 t DM ha−1 of the experimental data. Observed miscanthus yields were higher than switchgrass yields in most sites and for all treatments, with one exception. Overall, the model captured the differences between both crops adequately, with a mean deviation of 0.46 t DM ha−1, and could be used to guide feedstock selections over larger biomass supply areas

    Direct observation of ultrafast exciton localization in an organic semiconductor with soft X-ray transient absorption spectroscopy

    Get PDF
    The localization dynamics of excitons in organic semiconductors influence the efficiency of charge transfer and separation in these materials. Here we apply time-resolved X-ray absorption spectroscopy to track photoinduced dynamics of a paradigmatic crystalline conjugated polymer: poly(3-hexylthiophene) (P3HT) commonly used in solar cell devices. The π→π* transition, the first step of solar energy conversion, is pumped with a 15 fs optical pulse and the dynamics are probed by an attosecond soft X-ray pulse at the carbon K-edge. We observe X-ray spectroscopic signatures of the initially hot excitonic state, indicating that it is delocalized over multiple polymer chains. This undergoes a rapid evolution on a sub 50 fs timescale which can be directly associated with cooling and localization to form either a localized exciton or polaron pair

    Maternal supplementation with n-3 long chain polyunsaturated fatty acids during perinatal period alleviates the metabolic syndrome disturbances in adult hamster pups fed a high-fat diet after weaning

    Get PDF
    Perinatal nutrition is thought to affect the long-term risk of the adult to develop metabolic syndrome. We hypothesized that maternal supplementation with eicosapentaenoic acid and docosahexaenoic acid during pregnancy and lactation would protect offspring fed a high-fat diet from developing metabolic disturbances. Thus, two groups of female hamsters were fed a low-fat control diet, either alone (LC) or enriched with n-3 long chain polyunsaturated fatty acids (LC-PUFA) (LO), through the gestational and lactation periods. After weaning, male pups were randomized to separate groups that received either a control low-fat diet (LC) or a high-fat diet (HC) for 16 weeks. Four groups of pups were defined (LC-LC, LC-HC, LO-LC and LO-HC), based on the combinations of maternal and weaned diets. Maternal n-3 LC-PUFA supplementation was associated with reduced levels of basal plasma glucose, hepatic triglycerides secretion and postprandial lipemia in the LO-HC group compared to the LC-HC group. Respiratory parameters were not affected by maternal supplementation. In contrast, n-3 LC-PUFA supplementation significantly enhanced the activities of citrate synthase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase compared to the offspring of unsupplemented mothers. Sterol regulatory element binding protein-1c, diacylglycerol O-acyltransferase 2, fatty acid synthase, stearoyl CoA desaturase 1 and tumor necrosis factor α expression levels were not affected by n-3 LC-PUFA supplementation. These results provide evidence for a beneficial effect of n-3 LC-PUFA maternal supplementation in hamsters on the subsequent risk of metabolic syndrome. Underlying mechanisms may include improved lipid metabolism and activation of the mitochondrial oxidative pathway

    Cryptic invasion drives phenotypic changes in central European threespine stickleback

    Get PDF
    Cryptic invasions are commonly associated with genetic changes of the native species or genetic lineage that the invaders replace. Phenotypic shifts resulting from cryptic invasions are less commonly reported given the relative paucity of historical specimens that document such phenotypic changes. Here, I study such a case in two populations of threespine stickleback from central Europe, comparing contemporary patterns of gene flow with phenotypic changes between historical and contemporary population samples. I find gene flow from an invasive lineage to be associated with significant phenotypic changes, where the degree of phenotypic change corresponds with the level of gene flow that a population receives. These findings underline the utility of combining genetic approaches with phenotypic data to estimate the impact of gene flow in systems where anthropogenic alterations have removed former geographic barriers promoting cryptic invasions

    Biofuels, greenhouse gases and climate change. A review

    Full text link

    Making sense of the relationships between Ne, Nb and Nc towards defining conservation thresholds in Atlantic salmon (Salmo salar)

    No full text
    International audienceEffective population size over a generation (Ne) or over a reproductive cycle (Nb) and the adult census size (Nc) are important parameters in both conservation and evolutionary biology. Ne provides information regarding the rate of loss of genetic diversity and can be tracked back in time to infer demographic history of populations, whereas Nb may often be more easily quantified than Nc for short-term abundance monitoring. In this study, we propose (1) an empirical context to Waples et al. (2014) who introduced a correction to bias due to overlapping generations, and (2) a mathematical relationship between Ne and Nb for direct application in Atlantic salmon populations in Quebec, Canada. To achieve this, we investigate the relationships between Ne, Nb and Nc in 10 Atlantic salmon populations, Canada, for which we genotyped 100 randomly sampled young-of-the year individuals for 5 consecutive years. The results show a positive correlation between Ne, Nb and Nc, suggesting that Nb is an indicative parameter for tracking effective population size and abundance of Atlantic salmon. However, our model allows predicting Nc from Nb values at 27% that can be partly explained by high variance in Nb/Nc both among populations (37%) and among years (19%). This result illustrates the need for thorough calibration of Nb/Nc before using Nb in monitoring programs, as well as a full understanding of the limits of such an approach. Finally, we discuss the importance of these results for the management of wild populations

    New polymorphic microsatellite markers of the endangered meadow viper (; Vipera ursinii; ) identified by 454 high-throughput sequencing: when innovation meets conservation

    Get PDF
    The Next Generation Sequencing (pyrose- quencing) technique allows rapid, low-cost development of microsatellite markers. We have used this technology to develop 14 polymorphic loci for the endangered meadow viper (Vipera ursinii). Based on 37,000 reads, we devel- oped primers for 66 microsatellite loci and found that 14 were polymorphic. The number of alleles per locus varies from 1 to 12 (for 30 individuals tested). At a cost of about 1/3 that of a normal microsatellite development, we were able to define enough microsatellite markers to conduct population genetic studies on a non-model species
    • …
    corecore