109 research outputs found

    3D functional models of monkey brain through elastic registration of histological sections

    Get PDF
    In this paper we describe a method for the reconstruction and visualization of functional models of monkey brains. Models are built through the registration of high resolution images obtained from the scanning of histological sections with reference photos taken during the brain slicing. From the histological sections it is also possible to acquire specifically activated neuron coordinates introducing functional information in the model. Due to the specific nature of the images (texture information is useless and the sections could be deformed when they were cut and placed on glass) we solved the registration problem by extracting corresponding cerebral cortex borders (extracted with a snake algorithm), and computing from their deformation an image transform modeled as an affine deformation plus a non-linear field evaluated as an elastically constrained deformation minimizing contour distances. Registered images and contours are used then to build 3D models of specific brains by a software tool allowing the interactive visualization of cortical volumes together with the spatially referenced neurons classified and differently colored according to their functionalities

    Intensity-based image registration using multiple distributed agents

    Get PDF
    Image registration is the process of geometrically aligning images taken from different sensors, viewpoints or instances in time. It plays a key role in the detection of defects or anomalies for automated visual inspection. A multiagent distributed blackboard system has been developed for intensity-based image registration. The images are divided into segments and allocated to agents on separate processors, allowing parallel computation of a similarity metric that measures the degree of likeness between reference and sensed images after the application of a transform. The need for a dedicated control module is removed by coordination of agents via the blackboard. Tests show that additional agents increase speed, provided the communication capacity of the blackboard is not saturated. The success of the approach in achieving registration, despite significant misalignment of the original images, is demonstrated in the detection of manufacturing defects on screen-printed plastic bottles and printed circuit boards

    Fast Mesh-Based Medical Image Registration

    Full text link
    In this paper a fast triangular mesh based registration method is proposed. Having Template and Reference images as inputs, the template image is triangulated using a content adaptive mesh generation algorithm. Considering the pixel values at mesh nodes, interpolated using spline interpolation method for both of the images, the energy functional needed for image registration is minimized. The minimization process was achieved using a mesh based discretization of the distance measure and regularization term which resulted in a sparse system of linear equations, which due to the smaller size in comparison to the pixel-wise registration method, can be solved directly. Mean Squared Difference (MSD) is used as a metric for evaluating the results. Using the mesh based technique, higher speed was achieved compared to pixel-based curvature registration technique with fast DCT solver. The implementation was done in MATLAB without any specific optimization. Higher speeds can be achieved using C/C++ implementations.Comment: Accepted manuscript for ISVC'201

    Color image registration under illumination changes

    Get PDF
    The estimation of parametric global motion has had a significant attention during the last two decades, but despite the great efforts invested, there are still open issues. One of the most important ones is related to the ability to recover large deformation between images in the presence of illumination changes while kipping accurate estimates. Illumination changes in color images are another important open issue. In this paper, a Generalized least squared-based motion estimator is used in combination with color image model to allow accurate estimates of global motion between two color images under the presence of large geometric transformation and illumination changes. Experiments using challenging images have been performed showing that the presented technique is feasible and provides accurate estimates of the motion and illumination parameter

    Automatic Optimization of Alignment Parameters for Tomography Datasets

    Full text link
    As tomographic imaging is being performed at increasingly smaller scales, the stability of the scanning hardware is of great importance to the quality of the reconstructed image. Instabilities lead to perturbations in the geometrical parameters used in the acquisition of the projections. In particular for electron tomography and high-resolution X-ray tomography, small instabilities in the imaging setup can lead to severe artifacts. We present a novel alignment algorithm for recovering the true geometrical parameters \emph{after} the object has been scanned, based on measured data. Our algorithm employs an optimization algorithm that combines alignment with reconstruction. We demonstrate that problem-specific design choices made in the implementation are vital to the success of the method. The algorithm is tested in a set of simulation experiments. Our experimental results indicate that the method is capable of aligning tomography datasets with considerably higher accuracy compared to standard cross-correlation methods

    Advances in multispectral and hyperspectral imaging for archaeology and art conservation

    Get PDF
    Multispectral imaging has been applied to the field of art conservation and art history since the early 1990s. It is attractive as a noninvasive imaging technique because it is fast and hence capable of imaging large areas of an object giving both spatial and spectral information. This paper gives an overview of the different instrumental designs, image processing techniques and various applications of multispectral and hyperspectral imaging to art conservation, art history and archaeology. Recent advances in the development of remote and versatile multispectral and hyperspectral imaging as well as techniques in pigment identification will be presented. Future prospects including combination of spectral imaging with other noninvasive imaging and analytical techniques will be discussed

    How to measure the pose robustness of object views

    No full text
    The viewing hemisphere of a three-dimensional object can be partitioned into areas of similar views, which provide pose robustness. We compare two procedures for measuring the robustness of views to pose variation: tracking of object features, i.e. Gabor wavelet responses, by utilizing the continuity of successive views and matching of features in different views, which are assumed to be independent. Both procedures proved to be appropriate to detect canonical views. We found no difference concerning the size of the view bubbles, but tracking provides more precise correspondences than matching. Tracking is more appropriate for recognizing changes of features, whereas matching is more suitable if features of the same appearance are to be found. q 2002 Elsevier Science B.V. All rights reserved. Keywords: Three-dimensional object perception; Pose robustness; Matching/tracking object features; Canonical views 1. Subject of investigation Many models have been proposed for three-dimensional object perception. Besides volume-based object representations, which seem to be very economical but often require the interaction from a user to acquire them, as for example, described in Ref. [1], many computational models combine two-dimensional views into the equivalent of a three-dimensiona
    • …
    corecore