39 research outputs found

    Formation and characteristics of ions and charged aerosol particles in a native Australian Eucalypt forest

    Get PDF
    International audienceBiogenic aerosol formation is likely to contribute significantly to the global aerosol load. In recent years, new-particle formation has been observed in various ecosystems around the world but hardly any measurements have taken place in the terrestrial Southern Hemisphere. Here, we report the first results of atmospheric ion and charged particle concentrations as well as of new-particle formation in a Eucalypt forest in Tumbarumba, South-East Australia, from July 2005 to October 2006. The measurements were carried out with an Air Ion Spectrometer (AIS) with a size range from 0.34 to 40 nm. The Eucalypt forest was a very strong source of new aerosol particles. Daytime aerosol formation took place on 52% of days with acceptable data, which is 2?3 times as often as in the Nordic boreal zone. Average growth rates for negative/positive 1.5?3 nm particles during these formation events were 2.89/2.68 nmh?1, respectively; for 3-7 nm particles 4.26/4.03, and for 7?20 nm particles 8.90/7.58 nmh?1, respectively. The growth rates for large ions were highest when the air was coming from the native forest which suggests that the Eucalypts were a strong source of condensable vapours. Average concentrations of cluster ions (0.34?1.8 nm) were 2400/1700 cm?3 for negative/positive ions, very high compared to most other measurements around the world. One reason behind these high concentrations could be the strong radon efflux from the soils around the Tumbarumba field site. Furthermore, comparison between night-time and daytime concentrations supported the view that cluster ions are produced close to the surface within the boundary layer also at night but that large ions are mostly produced in daytime. Finally, a previously unreported phenomenon, nocturnal aerosol formation, appeared in 32% of the analysed nights but was clustered almost entirely within six months from summer to autumn in 2006. From January to May, nocturnal formation was 2.5 times as frequent as daytime formation. Therefore, it appears that in summer and autumn, nocturnal production was the major mechanism for aerosol formation in Tumbarumba

    Studying feasibility and effects of a two-stage nursing staff training in residential geriatric care using a 30 month mixed-methods design [ISRCTN24344776]

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transfer techniques and lifting weights often cause back pain and disorders for nurses in geriatric care. The Kinaesthetics care conception claims to be an alternative, yielding benefits for nurses as well as for clients.</p> <p>Starting a multi-step research program on the effects of Kinaesthetics, we assess the feasibility of a two-stage nursing staff training and a pre-post research design. Using quantitative and qualitative success criteria, we address mobilisation from the bed to a chair and backwards, walking with aid and positioning in bed on the staff level as well as on the resident level. In addition, effect estimates should help to decide on and to prepare a controlled trial.</p> <p>Methods/Design</p> <p>Standard basic and advanced Kinaesthetics courses (each comprising four subsequent days and an additional counselling day during the following four months) are offered to n = 36 out of 60 nurses in a residential geriatric care home, who are in charge of 76 residents. N = 22 residents needing movement support are participating to this study.</p> <p>On the staff level, measurements include focus group discussions, questionnaires, physical strain self-assessment (Borg scale), video recordings and external observation of patient assistance skills using a specialised instrument (SOPMAS). Questionnaires used on the resident level include safety, comfort, pain, and level of own participation during mobilisation. A functional mobility profile is assessed using a specialised test procedure (MOTPA).</p> <p>Measurements will take place at baseline (T0), after basic training (T1), and after the advanced course (T2). Follow-up focus groups will be offered at T1 and 10 months later (T3).</p> <p>Discussion</p> <p>Ten criteria for feasibility success are established before the trial, assigned to resources (missing data), processes (drop-out of nurses and residents) and science (minimum effects) criteria. This will help to make rational decision on entering the next stage of the research program.</p> <p>Trial Registration</p> <p>Current Controlled Trials <a href="http://www.controlled-trials.com/ISRCTN24344776">ISRCTN24344776</a>.</p

    The Ginninderra CH4 and CO2 release experiment: An evaluation of gas detection and quantification techniques

    Get PDF
    A methane (CH4) and carbon dioxide (CO2) release experiment was held from April to June 2015 at the Ginninderra Controlled Release Facility in Canberra, Australia. The experiment provided an opportunity to compare different emission quantification techniques against a simulated CH4 and CO2 point source release, where the actual release rates were unknown to the participants. Eight quantification techniques were assessed: three tracer ratio techniques (two mobile); backwards Lagrangian stochastic modelling; forwards Lagrangian stochastic modelling; Lagrangian stochastic (LS) footprint modelling; atmospheric tomography using point and using integrated line sensors. The majority of CH4 estimates were within 20% of the actual CH4 release rate (5.8 g/min), with the tracer ratio technique providing the closest estimate to both the CH4 and CO2 release rates (100 g/min). Once the release rate was known, the majority of revised estimates were within 10% of the actual release rate. The study illustrates the power of measuring the emission rate using multiple simultaneous methods and obtaining an ensemble median or mean. An ensemble approach to estimating the CH4 emission rate proved successful with the ensemble median estimate within 16% for the actual release rate for the blind release experiment and within 2% once the release rate was known. The release also provided an opportunity to assess the effectiveness of stationary and mobile ground and aerial CH4 detection technologies. Sensor detection limits and sampling rates were found to be significant limitations for CH4 and CO2 detection. A hyperspectral imager’s capacity to image the CH4 release from 100 m, and a Boreal CH4 laser sensor’s ability to track moving targets suggest the future possibility to map gas plumes using a single laser and mobile aerial reflector

    The Ginninderra CH4 and CO2 release experiment: An evaluation of gas detection and quantification techniques

    Get PDF
    A methane (CH4) and carbon dioxide (CO2) release experiment was held from April to June 2015 at the Ginninderra Controlled Release Facility in Canberra, Australia. The experiment provided an opportunity to compare different emission quantification techniques against a simulated CH4 and CO2 point source release, where the actual release rates were unknown to the participants. Eight quantification techniques were assessed: three tracer ratio techniques (two mobile); backwards Lagrangian stochastic modelling; forwards Lagrangian stochastic modelling; Lagrangian stochastic (LS) footprint modelling; atmospheric tomography using point and using integrated line sensors. The majority of CH4 estimates were within 20% of the actual CH4 release rate (5.8 g/min), with the tracer ratio technique providing the closest estimate to both the CH4 and CO2 release rates (100 g/min). Once the release rate was known, the majority of revised estimates were within 10% of the actual release rate. The study illustrates the power of measuring the emission rate using multiple simultaneous methods and obtaining an ensemble median or mean. An ensemble approach to estimating the CH4 emission rate proved successful with the ensemble median estimate within 16% for the actual release rate for the blind release experiment and within 2% once the release rate was known. The release also provided an opportunity to assess the effectiveness of stationary and mobile ground and aerial CH4 detection technologies. Sensor detection limits and sampling rates were found to be significant limitations for CH4 and CO2 detection. A hyperspectral imager\u27s capacity to image the CH4 release from 100 m, and a Boreal CH4 laser sensor\u27s ability to track moving targets suggest the future possibility to map gas plumes using a single laser and mobile aerial reflector

    Information, Schulung und Beratung von Klienten in der Pflege

    No full text

    „Ich möchte nach Hause!“

    No full text
    corecore