156 research outputs found

    Effects of life-long exercise on circulating free fatty acids and muscle triglyceride content in ageing rats.

    Get PDF
    Regular physical exercise has emerged, together with dietary restriction, as an effective intervention in delaying degenerative diseases and augmenting life span in rodents. The mechanisms involved remain largely unknown, although a beneficial influence on the age-related alteration of insulin sensitivity has been hypothesized. As muscle triglyceride (TG) accumulation is considered a reliable index of muscle insulin resistance, in this study we explored muscle TG content in 23-month-old male Sprague-Dawley rats subjected to life-long training. Plasma glucose. insulin. free fatty acid (FFA) and leptin levels were also measured. Both voluntary running in wheels (RW) and forced training in treadmill (TM) were studied. As RW rats weighed less than controls, a cohort of untrained animals, fed to pair weight (PW) with RW, was added to discriminate the effect of exercise from that of food restriction. Sedentary ad libitum fed rats served as controls. In 23-month-old RW rats. muscle TG content was reduced by 50% with respect to age-matched sedentary controls, while in TM group this reduction was smaller but still highly significant, and occurred independently on the changes in body fat mass. In both the trained rat groups, there was a significant decrease in circulating FFA levels and a trend to reduced insulin levels. In PW rats, muscle TG levels decreased similarly to RW rats, while plasma parameters were less modified. In particular, RW training was more effective than PW in preventing the age-related increase in circulating leptin levels. Our results suggest that voluntary exercise effectively counteracts the development of insulin resistance in the muscles of ageing rats as well as other related changes such as hyperlipacidaemia and compensatory hyperleptinaemia. Forced training or moderate food restriction appear slightly less effective than voluntary exercise in preventing age-dependent alterations in nutrient distribution and/or utilization. (C) 2004 Elsevier Inc. All rights reserved

    Modeling of failure mode in knee ligaments depending on the strain rate

    Get PDF
    BACKGROUND: The failure mechanism of the knee ligament (bone-ligament-bone complex) at different strain rates is an important subject in the biomechanics of the knee. This study reviews and summarizes the literature describing ligament injury as a function of stain rate, which has been published during the last 30 years. METHODS: Three modes of injury are presented as a function of strain rate, and they are used to analyze the published cases. The number of avulsions is larger than that of ligament tearing in mode I. There is no significant difference between the number of avulsions and ligament tearing in mode II. Ligament tearing happens more frequently than avulsion in mode III. RESULTS: When the strain rate increases, the order of mode is mode I, II, III, I, and II. Analytical models of ligament behavior as a function of strain rate are also presented and used to provide an integrated framework for describing all of the failure regimes. In addition, this study showed the failure mechanisms with different specimens, ages, and strain rates. CONCLUSION: There have been several a numbers of studies of ligament failure under various conditions including widely varying strain rates. One issue in these studies is whether ligament failure occurs mid-ligament or at the bone attachment point, with assertions that this is a function of the strain rate. However, over the range of strain rates and other conditions reported, there has appeared to be discrepancies in the conclusions on the effect of strain rate. The analysis and model presented here provides a unifying assessment of the previous disparities, emphasizing the differential effect of strain rate on the relative strengths of the ligament and the attachment

    Effect of training and sudden detraining on the patellar tendon and its enthesis in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different conditions may alter tendon characteristics. Clinical evidence suggests that tendon injuries are more frequent in athletes that change type, intensity and duration of training. Aim of the study was the assessment of training and especially detraining on the patellar tendon (PT) and its enthesis.</p> <p>Methods</p> <p>27 male adult Sprague-Dawley rats were divided into 3 groups: 20 rats were trained on a treadmill for 10 weeks. Of these, 10 rats were euthanized immediately after training (trained group), and 10 were caged without exercise for 4 weeks before being euthanized (de-trained group). The remaining 7 rats were used as controls (untrained rats). PT insertion, structure (collagen fiber organization and proteoglycan, PG, content), PT thickness, enthesis area, and subchondral bone volume at the enthesis were measured by histomorphometry and microtomography.</p> <p>Results</p> <p>Both PG content and collagen fiber organization were significantly lower in untrained and detrained animals than in trained ones (<it>p </it>< 0.05 and <it>p </it>< 0.0001). In the detrained group, fiber organization and PG content were worse than that of the untrained groups and the untrained group showed a significantly higher score than the detrained group (<it>p </it>< 0.05). In the trained group, the PT was significantly thicker than in untrained group (<it>p </it>< 0.05). No significant differences in the enthesis area and subchondral bone volume among the three groups were seen.</p> <p>Conclusions</p> <p>Moderate exercise exerts a protective effect on the PT structure while sudden discontinuation of physical activity has a negative effect on tendons. The present results suggest that after a period of sudden de-training (such as after an injury) physical activity should be restarted with caution and with appropriate rehabilitation programs.</p

    More resistant tendons obtained from the association of Heteropterys aphrodisiaca and endurance training

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Popular Brazilian medicine uses <it>Heteropterys aphrodisiaca </it>infusion as a tonic or stimulant, for the treatment of nervous debility and breakdown and for muscle and bone weakness. This study investigated the effects of <it>Heteropterys aphrodisiaca </it>infusion on the tendon properties and extracellular matrix of rats under endurance training.</p> <p>Methods</p> <p>Wistar rats were grouped as follows: CS- control sedentary, HS- <it>H. aphrodisiaca </it>sedentary, CT-control trained, HT- <it>H. aphrodisiaca </it>trained. The training protocol consisted in running on a motorized treadmill, five times a week, with weekly increase in treadmill speed and duration. Control groups received water while the HS and HT groups received <it>H. aphrodisiaca </it>infusion, daily, by gavage for the 8 weeks of training. Achilles tendons were frozen for biochemical and biomechanical analysis or preserved in Karnovsky's fixative, then processed for histomorphological analysis with light microscopy.</p> <p>Results</p> <p>Biomechanical analysis showed significant increase in maximum load, maximum stress, modulus of elasticity and stiffness of the HT animals' tendons. The metalloproteinase-2 activity was reduced in the HT group. The compression region of HT animals' tendons had a stronger and more intense metachromasy, which suggests an increase in glycosaminoglycan concentration in this region of the tendon. The most intense birefringence was observed in both compression and tension regions of HT animals' tendons, which may indicate a higher organizational level of collagen bundles. The hydroxyproline content increased in the HT group.</p> <p>Conclusions</p> <p>The association of endurance training with <it>H. aphrodisiaca </it>resulted in more organized collagen bundles and more resistant tendons to support higher loads from intense muscle contraction. Despite the clear anabolic effects of <it>Heteropterys aphrodisiaca </it>and the endurance exercise association, no side effects were observed, such as those found for synthetic anabolic androgenic steroids.</p

    The Viscoelastic Properties of Passive Eye Muscle in Primates. I: Static Forces and Step Responses

    Get PDF
    The viscoelastic properties of passive eye muscles are prime determinants of the deficits observed following eye muscle paralysis, the root cause of several types of strabismus. Our limited knowledge about such properties is hindering the ability of eye plant models to assist in formulating a patient's diagnosis and prognosis. To investigate these properties we conducted an extensive in vivo study of the mechanics of passive eye muscles in deeply anesthetized and paralyzed monkeys. We describe here the static length-tension relationship and the transient forces elicited by small step-like elongations. We found that the static force increases nonlinearly with length, as previously shown. As expected, an elongation step induces a fast rise in force, followed by a prolonged decay. The time course of the decay is however considerably more complex than previously thought, indicating the presence of several relaxation processes, with time constants ranging from 1 ms to at least 40 s. The mechanical properties of passive eye muscles are thus similar to those of many other biological passive tissues. Eye plant models, which for lack of data had to rely on (erroneous) assumptions, will have to be updated to incorporate these properties

    A mouse model offers novel insights into the myopathy and tendinopathy often associated with pseudoachondroplasia and multiple epiphyseal dysplasia

    Get PDF
    Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are relatively common skeletal dysplasias belonging to the same bone dysplasia family. PSACH is characterized by generalized epi-metaphyseal dysplasia, short-limbed dwarfism, joint laxity and early onset osteoarthritis. MED is a milder disease with radiographic features often restricted to the epiphyses of the long bones. PSACH and some forms of MED result from mutations in cartilage oligomeric matrix protein (COMP), a pentameric glycoprotein found in cartilage, tendon, ligament and muscle. PSACH-MED patients often have a mild myopathy characterized by mildly increased plasma creatine kinase levels, a variation in myofibre size and/or small atrophic fibres. In some instances, patients are referred to neuromuscular clinics prior to the diagnosis of an underlying skeletal dysplasia; however, the myopathy associated with PSACH-MED has not previously been studied. In this study, we present a detailed study of skeletal muscle, tendon and ligament from a mouse model of mild PSACH harbouring a COMP mutation. Mutant mice exhibited a progressive muscle weakness associated with an increased number of muscle fibres with central nuclei at the perimysium and at the myotendinous junction. Furthermore, the distribution of collagen fibril diameters in the mutant tendons and ligaments was altered towards thicker collagen fibrils, and the tendons became more lax in cyclic strain tests. We hypothesize that the myopathy in PSACH-MED originates from an underlying tendon and ligament pathology that is a direct result of structural abnormalities to the collagen fibril architecture. This is the first comprehensive characterization of the musculoskeletal phenotype of PSACH-MED and is directly relevant to the clinical management of these patients

    Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons

    Get PDF
    Ligaments and tendons are soft connective tissues which serve essential roles for biomechanical function of the musculoskeletal system by stabilizing and guiding the motion of diarthrodial joints. Nevertheless, these tissues are frequently injured due to repetition and overuse as well as quick cutting motions that involve acceleration and deceleration. These injuries often upset this balance between mobility and stability of the joint which causes damage to other soft tissues manifested as pain and other morbidity, such as osteoarthritis
    corecore