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Abstract

Background: In a noticeable percentage of patients anterolateral rotational instabilities (ALRI) remain after an
isolated ACL reconstruction. Those instabilities may occur due to an insufficiently directed damage of anterolateral
structures that is often associated with ACL ruptures. Recent publications describe an anatomical structure, termed
the anterolateral ligament (ALL), and suggest that this ligament plays a significant role in the pathogenesis of ALRI of
the knee joint. However, only limited knowledge about the biomechanical characteristics and tensile properties of the
anterolateral ligament exists.

Methods: The anterolateral ligament was dissected in four fresh-frozen human cadaveric specimens and all
surrounding tissue removed. The initial length of the anterolateral ligament was measured using a digital caliper.
Tensile tests with load to failure were performed using a materials testing machine. The explanted anterolateral
ligaments were histologically examined to measure the cross-sectional area.

Results: The mean ultimate load to failure of the anterolateral ligament was 49.90 N (± 14.62 N) and the mean
ultimate strain was 35.96% (± 4.47%). The mean length of the ligament was 33.08 mm (± 2.24) and the mean
cross-sectional area was 1.54mm2 (± 0.48mm2). Including the areal measurements the maximum tension was
calculated to be 32.78 N

mm2 (± 4.04 N
mm2 ).

Conclusions: The anterolateral ligament is an anatomical structure with tensile properties that are considerably
weaker compared to other peripheral structures of the knee. Knowledge of the anterolateral ligament’s tensile
strengths may help to better understand its function and with graft choices for reconstruction procedures.
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Background
Traumatic injuries to the anterior cruciate ligament (ACL)
are one of the most common reasons for clinical pre-
sentation in sports medicine. Its surgical repair follows
standard procedures which evolved over several decades.
However, in a noteworthy percentage of patients antero-
lateral rotational instabilities (ALRI) remain following
state-of-the-art surgery. Reasons for this observation are
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discussed in current literature and several research groups
suggest that injury to anterolateral structures of the knee
joint may result in ALRI. Baker et al. (1983); Hughston
et al. (1976); Tanaka et al. (2012); Terry et al. (1993),
Wroble et al. (1993) in an anatomical study, Claes et al.
(2013) recently investigated a ligamentous structure that
had primarily been described by Segond (1879) in 1879.
This structure, termed anterolateral ligament (ALL),
connects the lateral epicondylus of the femur with the
anterolateral proximal tibia and was found in 40 of 41
examined specimen. Those findings were confirmed by
other research groups. Caterine et al. (2014); Dodds et al.
(2014); Helito et al. (2013); Parsons et al. (2015); Zens
et al. (2014) independently, various authors suggested that
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the ALLmay be a significant stabilizer in the knee. Recon-
struction was proposed to be necessary to avoid or dimin-
ish ALRI, especially for revision cases and primary cases
with gross positive pivot-shifts (Claes et al. 2013; Helito
et al. 2014, 2013; Rezansoff et al. 2014, Sonnery-Cottet
et al. 2014). However, before implying such a necessity a
thorough biomechanical analysis ought to be conducted.
Knowledge about the ligaments tensile properties may
serve a better understanding of the ligaments behavior,
allows a fact-based assessment of its possible contribu-
tion to ALRI and is essential for the selection of a suitable
transplant and reconstruction technique. Up until now
only very few studies have been published regarding the
mechanical properties of the ALL. All of those studies
have investigated the length changes of the ALL dur-
ing passive knee motion. The purpose of this study was
to determine typical mechanical properties of the ALL
through tension testing. No previous study has measured
the maximum load to failure of the ALL. By compar-
ing this data with values previously determined for other
ligaments and considering the absolute values, such as
ultimate tensile stress, ultimate strain and Young’s modu-
lus, a better evaluation of the ligaments significance can
be given. Furthermore, possible reconstruction grafts with
similar mechanical features can be identified.

Methods
Dissection technique
Four fresh-frozen human cadaveric knees were included
in this study (3 male, 1 female). The cadaveric knees
were obtained from the Institut of Anatomy, Friedrich-
Alexander-University of Erlangen-Nuremberg, with writ-
ten consent from all donors and in accordance with ethical
approval of the University of Freiburg (Ref. 45/15). The
mean age of the specimen was 86.5 ± 1.7. None of
the studied knees had undergone significant surgery or
showed signs of bone deformity. Before testing, the speci-
mens were thawed for 48 hours. All tests were performed
at room temperature and the specimens were constantly
kept moist with saline solution. Initially the ALL was care-
fully dissected using a standardized procedure described
by Claes et al. (2013). This was done by a single inves-
tigator with the knee in 90° of flexion. Bony landmarks
of the ALL, being the lateral epicondyle, the fibular head
and Gerdy’s tubercle, were identified through palpation. A
hand sized, rectangular cuteness flap was removed above
this area. After removal of subcutaneous fat the iliotib-
ial tract, extensor apparatus and the short head of the
biceps femoris were displayed. Subsequently, the iliotib-
ial tract was cut through approximately 60 mm proximal
of the lateral epicondyle and delicately released to its tib-
ial attachment by cutting the Kaplan fibers attached to
the lateral intermusculare septum and the lateral retinac-
ulum. Following this step the lateral collateral ligament

(LCL) was identified and the distal tibia rotated in inte-
rior direction, thus allowing an identification of the ALL.
In all four specimen a ligamentous structure, as described
in previous publications, was identified connecting the
lateral femoral epicondyle and the anterolateral proximal
tibia (Figure 1). The initial length L0 of the ALL was mea-
sured in 0° flexion using a digital caliper and documented.
Afterwards the ALL was carefully isolated and under-
mined with a surgical vessel loop. Tibia and femur were
thoroughly fixated in two hollow aluminum cylinders that
were used to mount the knee joints in the materials test-
ingmachine. This step was succeeded by a radical removal
of all connecting structures between thigh and lower leg,
except the ALL, leaving the anterolateral ligament as the
only connecting tissue bridge.

Testing procedure
Uniaxial tensile failure tests were conducted on a servo-
hydraulic materials testing machine (Zwick/Roell Amsler
HC 10, Zwick/Roell AG, Ulm, Germany) at an extension
rate of 0.5 mm/s. The fiber course of the ALL was in line
with the direction of force thereby simulating a worst-case
scenario. All four specimen were tested without precon-
ditioning cycles. The stop criterion was a relative drop in
force of 90%. A force-distance curve, ultimate load to fail-
ure (in N) and ultimate extension distance (in mm) were
recorded for each specimen. The sampling rate was set
to 100 Hz. Stress-strain curves, ultimate tensile stress (in
N/mm2), ultimate strain (in %) and Young’s modulus at
20% strain were calculated by taking the initial length L0
and the cross-sectional area A0 into account.

Cross-sectional area measurement
Accurate cross-sectional measurements of the ALL were
performed by obtaining and dimensioning histological
cross-sectional cuts. For this purpose the torn ALL of
each cadaveric knee was explanted after tensile testing and
quick-frozen in liquid isopentane (T < −80°C). Tissue

Figure 1 Dissected ALL. A: Dissected anterolateral ligament (ALL)
with surrounding structures in a right knee; ITB: iliotibial band, LCL:
lateral collateral ligament, GT: Gerdy’s tubercle, BT: biceps tendon, FH:
fibular head. B: Detailed view of the dissected ALL.
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Freezing Medium® (Leica Biosystems Nussloch GmbH,
Nussloch, Germany) was used to embed the quick-frozen
ALL. Cuts along approximately five equidistant sections
of each ALL were fixated on a specimen holder. A Leica
CM3050 S cryostat (Leica Biosystems Nussloch GmbH,
Nussloch, Germany) was utilized for this task. Follow-
ing fixation, representative cuts of each section were
stained with HE and Giemsa. AxioVision (Carl Zeiss AG,
Oberkochen, Germany) software was used to acquire
images and measure the cross-sectional area. The mean
was determined from cuts of the five equidistant sections.

Statistical analysis
Measurements were plotted and analyzed using
OriginPro® 9.0 (OriginLab Corp., Northampton, MA,
USA). Correlations between initial length, cross-sectional
area, ultimate load to failure, ultimate stress and ultimate
distance were revealed by calculating correlation coeffi-
cients. Subsequently, Student’s t-tests were performed to
test significance. Significance was set at P < 0.05.

Results
All four specimen showed an interligamentous failure at
approximately one third of the ALL’s length distal from
the femorial insertion site. A force-distance curve with an
average of 2,399 (± 318) data points was recorded for each
specimen. The resulting curves are shown in Figure 2A.
The mean ultimate load to failure was 49.90 N ± 14.62 N
and the mean ultimate extension distance was 11.89
mm ± 1.56 mm. Hence, resulting in a mean extensional
stiffness of 2.60 N ± 0.93 N.
In order to calculate stress-strain curves the initial

length L0 and the average cross-sectional area A0 per
ligament were included. Whereas the initial length was
measured prior to the tensile tests, the cross-sectional
area was determined by measuring five cuts of each ALL
and calculating their average. The mean initial length was
33.1 mm± 2.2 mm and themean cross-sectional area 1.54
mm2 ± 0.48 mm2. Dividing force by the cross-sectional
area and distance by the initial length results in the stress-
strain curves displayed in Figure 2B. The mean ultimate
stress was 32.78 N

mm2 ± 4.04 N
mm2 and the mean ultimate

strain 35.96% ± 4.47%. A Young’s modulus was calculated
at 20% strain with a mean value of 1.20 N

mm2 ± 0.44 N
mm2 .

Specimen 3 and 4 show a partial failure between 25 and
30% strain prior to ultimate failure of the ligament. Sta-
tistical analysis revealed a significant correlation between
ultimate load to failure and cross-sectional area (r = 0.897;
P < 0.05) as well as ultimate stress and ultimate distance
(r = -0.990; P < 0.01). The initial length of the ALL has
no significant effect on the ultimate strain (r = -0.126; P >

0.1). All measurement results are summarized in Table 1.
Besides cross-sectional area measurements the his-

tological cuts were further investigated regarding the

Figure 2Measurement results. A: Force-distance-curve directly
recorded using the materials testing machine; B: Stress-strain-curve
calculated by taking relative length changes and cross-sectional areas
into account.

composition of the anterolateral ligament. Using polar-
ization microscopy a unique crimping pattern was found
for the ALL. This proves the existence of a ligamen-
tous structure. Figure 3A shows the crimping of the ALL
along with detailed images of HE stained (Figure 3B) and
Giemsa stained (Figure 3C) histological samples.

Discussion
The purpose of this study was to determine the ten-
sile mechanical properties of the anterolateral ligament.
Terry et al. (1993) do not consider the ALL to be a
distinct ligamentous structure and use this term for a syn-
ergistically acting combination of superficial, deep and
capsulo-osseous layers of the ilitibial tract. The results
of this study are consistent with previous studies (Claes
et al. 2013; Helito et al. 2013) and show a clearly dis-
tinguishable fibre course with evidently defined insertion
sites for the four knees investigated. Hence, the ALL can
be considered as a self-contained anatomical structure.
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Table 1 Measurement results of tensile tests of the anterolateral ligament

Parameter Specimen 1 Specimen 2 Specimen 3 Specimen 4 Mean SD

Data points [n] 1,961 2,379 2,569 2,686 2,399 ± 318

Length L0 [mm] 32.2 33.4 30.7 36.0 33.1 ± 2.2

Cross-sectional area A0 [mm2] 1.64 0.85 1.72 1.95 1.54 ± 0.48

Max. force [N] 62.21 28.88 52.01 56.48 49.90 ± 14.62

Max. distance [mm] 9.80 11.69 12.62 13.43 11.89 ± 1.56

Max. stress [ N
mm2 ] 37.93 33.98 30.24 28.96 32.78 ± 4.04

Max. strain [%] 30.43 34.99 41.12 37.31 35.96 ± 4.47

Extensional stiffness [N] 3.99 2.04 2.24 2.15 2.60 ± 0.93

Young’s modulus (20%) [ N
mm2 ] 1.80 1.14 1.13 0.74 1.20 ± 0.44

However, findings and supposed interaction of iliotibial
band layers suggest that not a single stabilizer, but rather a
complex system of anterolateral structures is responsible
for rotational stability with the ALL being one element of
this system. Further actors of this system are the iliotibial
band and the anterolateral capsule. Kittl et al. (2014) in the
present study the ALL is investigated as an isolated struc-
ture. Clinically however, the ALL and its tensile properties
have to be viewed in context with synergistically acting
anatomical elements. Typically severe injuries will result
in a traumatic destruction of the anterolateral capsule and
the ALL. Isolated ALL ruptures are very unlikely, which
lessens the clinical relevance of the low absolute values
for load of failure (De Beule et al. 2014; Sonnery-Cottet
et al. 2015).
Current publications already describe and discuss

ALL reconstruction techniques without sufficient knowl-
edge of the fundamental properties. Previous studies

Figure 3 Histology of the ALL. Different histological illustrations of
the ALL; A: Polarization with crimping; B: HE stain; C: Giemsa stain.

addressing the biomechanical properties of the anterolat-
eral ligament have their focus on length changes during
physiological motion of the knee. Claes et al. (2013);
Dodds et al. (2014); Helito et al. (2013, 2014); Kittl et al.
(2014); Parsons et al. (2015) whereas the information
about length change is important for reconstruction tech-
niques, tensile properties allow a better assessment of a
ligament’s significance. Dodds et al. (2011) this is the first
study investigating the tensile properties of the ALL. The
mean ultimate tension of 32.78 N

mm2 (± 4.04 N
mm2 ) shows

a value that is comparable to other ligaments, e.g. ACL
37.80 N

mm2 (± 3.80 N
mm2 ) and MCL 38.60 N

mm2 (± 4.80
N

mm2 ). (Noyes et al. 1984; Moon et al. 2006; Quapp and
Weiss 1998) however, because of the small cross-sectional
area of the anteroateral ligament the ultimate load to fail-
ure of 49.90 N is only a fraction of values measured for
ACL (1,725 N ± 269 N), (MCL 1,107 N ± 126 N) and
PCL (1,051 N ± 237 N). The iliotibial tract displays a con-
siderably lower ultimate tension of 19.1 N (± 2.9 N ), but
because of its dimensions a 15 times higher ultimate load
to failure (769 N ± 99 N). All values reported above are
based on findings described for a group of young speci-
men (ACL, IT: mean age 27 years; MCL, PCL: mean age
unknown). Ligaments with a similar order of magnitude
are the LCL (309 N ± 91 N) and the popliteofibular liga-
ment complex (PFLC) (186 N± 65 N)). The study for LCL
and PFLC was performed on older specimen with a mean
age of approximately 70 years. Table 2 gives an overview
about tensile properties of various anatomic structures
previously described. Table 2 gives an overview about ten-
sile properties of various anatomic structures previously
described.
Noyes and Grood (1976), as well as Woo et al. (1991)

have shown in separate studies, that the ultimate load to
failure of the ACL in younger patients is 2.5 times higher
than in older patients. In case a similar trend applies
to the anterolateral ligament a value around 125 N may
be possible. Wang et al. (2006) report an age-dependent
modification of insertion sites leading to a decreasing load
to failure. Furthermore this study has shown a strong
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Table 2 Ultimate tension and ultimate load to failure of the ALL in comparison to other ligaments and possible grafts

Structure Ultimate tension [MPa] Ultimate load to Relation to ALL
failure [N] (load to failure) [%]

ALL 32.78 ± 4.04 49.90± 14.62 100

ACL1 (Noyes et al. 1984) 37.80 ± 3.80 1,725 ± 269 3,457

PCL2 (Noyes et al. 1984; Race and Amis 1994) 35.90 ± 15.20 739 - 1,627 1,481

MCL3 (Moon et al. 2006; Quapp and Weiss 1998) 38.60 ± 4.80 1,107 ± 126 2,219

Distal sMCL3 (Wijdicks et al. 2010) - 557 ± 55 1,116

Proximal sMCL3 (Wijdicks et al. 2010) - 88 ± 36 176

POL4 (Wijdicks et al. 2010) - 256 ± 30 513

Deep MCL3 (Wijdicks et al. 2010) - 101 ± 10 202

LCL5 (Sugita and Amis 2001) - 309 ± 91 619

PFLC6 (Sugita and Amis 2001) - 186 N ± 65 373

ITB7 (Noyes et al. 1984) 19.1 ± 2.9 769 ± 99 1,541

Fascia lata (Noyes et al. 1984) 78.7 ± 4.6 628 ± 35 1,259

Semitendinosus (Noyes et al. 1984) 88.5 ± 5.0 1,216 ± 50 2,437

Gracilis (Noyes et al. 1984) 111.5 ± 4.0 838 ± 30 1,679

1Anterior cruciate ligament, 2posterior cruciate ligament, 3(superficial) medial collateral ligament, 4posterior oblique ligament, 5lateral collateral ligament,
6popliteofibular ligament complex, 7iliotibial band.

correlation between the cross-sectional area, thus repre-
senting the dimensions of the ALL, and the ultimate load
to failure. The size of the ALL is expected to reduce with
age, hence resulting in a decreasing maximum load. Other
studies (Matthews et al. 1968; Moon et al. 2006; Viidik and
Lewin 1966; Woo et al. 1986) have investigated how freez-
ing of cadavers effects the tensile properties of ligaments.
The results showed a concurrent worsening of the mea-
sured properties, thus implying that the in vivo features
of the anterolateral ligament are rather underestimated in
this study. Even if all possible limitations are taken into
account the tensile properties the ALL are significantly
lower than those of primary stabilizers of the knee, such
as ACL, LCL and MCL. Further investigation is neces-
sary to definitely conclude how the ALL contributes to
ALRI. Based on the failure properties discovered in this
study and recognizing the limitations of testing cadav-
eric tissues the ALL is to be considered a structure that
acts synergistically with primary stabilizers, such as LCL,
ACL and iliotibial band to support the knee. Furthermore,
recommendations for reconstruction grafts can be pro-
posed based on those findings. Claes at al. (2013) suggest
an autologous graft of the gracilis tendon for an anatom-
ical repair of the ALL. Notwithstanding, all autologous
and artificial grafts choices displayed in Table 2 provide
a sufficient load to failure to replace the ALL, but the
ultimate tension of the gracilis tendon matches the ALL
the least. Based on the preliminary data of this study
other possible graft options, such as iliotibial band (ITB)
or semitendinosus tendon split-offs appear more suitable.
Besides choosing an appropriate graft for reconstruction

of the ALL the development of a suitable technique is
equally important. Lemaire et al. (1980) presented a sur-
gical method coping with anterolateral instabilities using
an ITB split-off. This approach has been adapted recently
by Wagner et al. (2014). Essentially, these techniques use
a ITB split-off. This split-off is shuttled underneath the
LCL to create a dynamic stabilization of the joint in
an anatomic course that is consistent with the axis of
the ALL. This ITB-based approach is found in a simi-
lar manner in other techniques. Carson (1985), Österman
et al. 1993, Wolff et al. (2005) approaches based on the
semitendinosus tendon to address ALRI have also been
discussed in literature (Ulmer et al. 2006; Zantop and
Petersen 2010).
This study has several limitations. Apart from limita-

tions that are generally associated with cadaveric mea-
surements, such as post-mortem degeneration of tissue,
age-dependency and effects of cadaver freezing, this study
is based on measurements of only four cadaveric knee
joints. However, the data of those four measurements
shows little variances and is very consistent. Considering
the fact that absolutely no data regarding the tensile prop-
erties of the ALL exists, but reconstruction methods are
already being developed, this preliminary data suggests
that further investigation of the biomechanical and espe-
cially tensile properties of the ALL is necessary, before
continuing with the development of surgical techniques.
Another limitation of this study is the determination of
the cross-sectional area of explanted ligaments after load
to failure testing. Tearing causes a constriction of the
ligaments, which underestimates the cross-sectional area
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prior to testing. Furthermore the uniaxial direction of
force tested in the measurement setup does not coincide
with the physiological axes of the anterolateral ligament as
a rotational stabilizer.

Conclusion
The anterolateral ligament is an anatomical structure with
an ultimate load to failure of 49.90 N and an ultimate ten-
sion of 32.78 N

mm2 . Based on the findings of this study a
definite conclusion regarding the significance of the ALL
cannot be given, but our data strongly suggests that the
ALL is not a primary stabilizer of the knee joint as the ten-
sile strengths are significantly lower than those of primary
stabilizers. Further fundamental biomechanical research
is necessary before starting to clinically reconstruct the
ALL.
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