37 research outputs found

    Bottom-trapped currents as statistical equilibrium states above topographic anomalies

    Get PDF
    Oceanic geostrophic turbulence is mostly forced at the surface, yet strong bottom-trapped flows are commonly observed along topographic anomalies. Here we consider the case of a freely evolving, initially surface-intensified velocity field above a topographic bump, and show that the self-organization into a bottom-trapped current can result from its turbulent dynamics. Using equilibrium statistical mechanics, we explain this phenomenon as the most probable outcome of turbulent stirring. We compute explicitly a class of solutions characterized by a linear relation between potential vorticity and streamfunction, and predict when the bottom intensification is expected. Using direct numerical simulations, we provide an illustration of this phenomenon that agrees qualitatively with theory, although the ergodicity hypothesis is not strictly fulfilled

    Statistical mechanics of Fofonoff flows in an oceanic basin

    Get PDF
    We study the minimization of potential enstrophy at fixed circulation and energy in an oceanic basin with arbitrary topography. For illustration, we consider a rectangular basin and a linear topography h=by which represents either a real bottom topography or the beta-effect appropriate to oceanic situations. Our minimum enstrophy principle is motivated by different arguments of statistical mechanics reviewed in the article. It leads to steady states of the quasigeostrophic (QG) equations characterized by a linear relationship between potential vorticity q and stream function psi. For low values of the energy, we recover Fofonoff flows [J. Mar. Res. 13, 254 (1954)] that display a strong westward jet. For large values of the energy, we obtain geometry induced phase transitions between monopoles and dipoles similar to those found by Chavanis and Sommeria [J. Fluid Mech. 314, 267 (1996)] in the absence of topography. In the presence of topography, we recover and confirm the results obtained by Venaille and Bouchet [Phys. Rev. Lett. 102, 104501 (2009)] using a different formalism. In addition, we introduce relaxation equations towards minimum potential enstrophy states and perform numerical simulations to illustrate the phase transitions in a rectangular oceanic basin with linear topography (or beta-effect).Comment: 26 pages, 28 figure

    Statistical characterisation of bio-aerosol background in an urban environment

    Full text link
    In this paper we statistically characterise the bio-aerosol background in an urban environment. To do this we measure concentration levels of naturally occurring microbiological material in the atmosphere over a two month period. Naturally occurring bioaerosols can be considered as noise, as they mask the presence of signals coming from biological material of interest (such as an intentionally released biological agent). Analysis of this 'biobackground' was undertaken in the 1-10 um size range and a 3-9% contribution was found to be biological in origin - values which are in good agreement with other studies reported in the literature. A model based on the physics of turbulent mixing and dispersion was developed and validated against this analysis. The Gamma distribution (the basis of our model) is shown to comply with the scaling laws of the concentration moments of our data, which enables us to universally characterise both biological and non-biological material in the atmosphere. An application of this model is proposed to build a framework for the development of novel algorithms for bio-aerosol detection and rapid characterisation.Comment: 14 Pages, 8 Figure

    Relaxation equations for two-dimensional turbulent flows with a prior vorticity distribution

    Full text link
    Using a Maximum Entropy Production Principle (MEPP), we derive a new type of relaxation equations for two-dimensional turbulent flows in the case where a prior vorticity distribution is prescribed instead of the Casimir constraints [Ellis, Haven, Turkington, Nonlin., 15, 239 (2002)]. The particular case of a Gaussian prior is specifically treated in connection to minimum enstrophy states and Fofonoff flows. These relaxation equations are compared with other relaxation equations proposed by Robert and Sommeria [Phys. Rev. Lett. 69, 2776 (1992)] and Chavanis [Physica D, 237, 1998 (2008)]. They can provide a small-scale parametrization of 2D turbulence or serve as numerical algorithms to compute maximum entropy states with appropriate constraints. We perform numerical simulations of these relaxation equations in order to illustrate geometry induced phase transitions in geophysical flows.Comment: 21 pages, 9 figure

    Manifestation of the Berry curvature in geophysical ray tracing

    No full text
    International audienceGeometrical phases, such as the Berry phase, have proven to be powerful concepts to understand numerous physical phenomena, from the precession of the Foucault pendulum to the quantum Hall effect and the existence of topological insulators. The Berry phase is generated by a quantity named the Berry curvature, which describes the local geometry of wave polarization relations and is known to appear in the equations of motion of multi-component wave packets. Such a geometrical contribution in ray propagation of vectorial fields has been observed in condensed matter, optics and cold atom physics. Here, we use a variational method with a vectorial Wentzel–Kramers–Brillouin ansatz to derive ray- tracing equations for geophysical waves and to reveal the contribution of the Berry curvature. We detail the case of shallow-water wave packets and propose a new interpretation of their oscillating motion around the equator. Our result shows a mismatch with the textbook scalar approach for ray tracing, by predicting a larger eastward velocity for PoincarĂ© wave packets. This work enlightens the role of the geometry of wave polarization in various geophysical and astrophysical fluid waves, beyond the shallow-water model
    corecore