14 research outputs found

    Unphosphorylated SR-Like Protein Npl3 Stimulates RNA Polymerase II Elongation

    Get PDF
    The production of a functional mRNA is regulated at every step of transcription. An area not well-understood is the transition of RNA polymerase II from elongation to termination. The S. cerevisiae SR-like protein Npl3 functions to negatively regulate transcription termination by antagonizing the binding of polyA/termination proteins to the mRNA. In this study, Npl3 is shown to interact with the CTD and have a direct stimulatory effect on the elongation activity of the polymerase. The interaction is inhibited by phosphorylation of Npl3. In addition, Casein Kinase 2 was found to be required for the phosphorylation of Npl3 and affect its ability to compete against Rna15 (Cleavage Factor I) for binding to polyA signals. Our results suggest that phosphorylation of Npl3 promotes its dissociation from the mRNA/RNAP II, and contributes to the association of the polyA/termination factor Rna15. This work defines a novel role for Npl3 in elongation and its regulation by phosphorylation

    Nuclear protein kinase CLK1 uses a non-traditional docking mechanism to select physiological substrates

    No full text
    Phosphorylation-dependent cell communication requires enzymes that specifically recognize key proteins in a sea of similar, competing substrates. The protein kinases achieve this goal by utilizing docking grooves in the kinase domain or heterologous protein adaptors to reduce “off pathway” targeting. We now provide evidence that the nuclear protein kinase CLK1 (Cdc2-like kinase 1) important for splicing regulation departs from these classic paradigms by using a novel self-association mechanism. The disordered N-terminus of CLK1 induces oligomerization, a necessary event for targeting its physiological substrates, the SR (arginine-serine-rich) protein family of splicing factors. Increasing the CLK1 concentration enhances phosphorylation of the splicing regulator SRSF1 compared to the general substrate myelin basic protein. In contrast, removal of the N-terminus or dilution of CLK1 induces monomer formation and reverses this specificity. CLK1 self-association also occurs in the nucleus, is induced by the N-terminus and is important for localization of the kinase in subnuclear compartments known as speckles. These findings present a new picture of substrate recognition for a protein kinase in which an intrinsically disordered domain is used to capture physiological targets with similar disordered domains in a large oligomeric complex while discriminating against nonphysiological targets
    corecore