131 research outputs found

    Animal Board Invited Review: Sheep birth distribution in past herds: a review for prehistoric Europe (6th to 3rd millennia BC)

    Get PDF
    In temperate latitudes sheep have a seasonal reproductive behaviour, which imposes strong constraints on husbandry in terms of work organization and availability of animal products. During the last 50 years, researchers have focused on understanding the mechanisms driving small ruminants’ reproduction cycles and finding ways to control them. This characteristic is inherited from their wild ancestor. However, the history of its evolution over the 10 millennia that separates present day European sheep from their Near Eastern ancestors’ remains to be written. This perspective echoes archaeologists’ current attempts at reconstructing ancient pastoral societies’ socio-economical organization. Information related to birth seasonality may be retrieved directly from archaeological sheep teeth. The methodology consists of reconstructing the seasonal cycle record in sheep molars, through sequential analysis of the stable oxygen isotope composition (δ 18O) of enamel. Because the timing of tooth development is fixed within a species, inter-individual variability in this parameter reflects birth seasonality. A review of the data obtained from 10 European archaeological sites dated from the 6th to the 3rd millennia BC is provided. The results demonstrate a restricted breeding season for sheep: births occurred over a period of 3 to 4 months, from late winter to early summer at latitudes 43°N to 48°N, while a later onset was observed at a higher latitude (59°N). All conclusions concurred with currently held expectations based on present day sheep physiology, which, aside from the historical significance, contributes to the reinforcing of the methodological basis of the approach. Further study in this area will permit regional variability attributable to technical choices, within global schemes, to be fully reported

    Dogs accompanied humans during the Neolithic expansion into Europe

    Get PDF
    International audienceNear Eastern Neolithic farmers introduced several species of domestic plants and animals as they dispersed into Europe. Dogs were the only domestic species present in both Europe and the Near East prior to the Neolithic. Here, we assessed whether early Near Eastern dogs possessed a unique mitochondrial lineage that differentiated them from Mesolithic European populations. We then analysed mitochondrial DNA sequences from 99 ancient European and Near Eastern dogs spanning the Upper Palaeolithic to the Bronze Age to assess if incoming farmers brought Near Eastern dogs with them, or instead primarily adopted indigenous European dogs after they arrived. Our results show that European pre-Neolithic dogs all possessed the mitochondrial haplogroup C, and that the Neolithic and Post-Neolithic dogs associated with farmers from Southeastern Europe mainly possessed haplogroup D. Thus, the appearance of haplogroup D most probably resulted from the dissemination of dogs from the Near East into Europe. In Western and Northern Europe, the turnover is incomplete and haplogroup C persists well into the Chalcolithic at least. These results suggest that dogs were an integral component of the Neolithic farming package and a mitochondrial lineage associated with the Near East was introduced into Europe alongside pigs, cows, sheep and goats. It got diluted into the native dog population when reaching the Western and Northern margins of Europe

    Unravelling the complexity of domestication:A case study using morphometrics and ancient DNA analyses of archaeological pigs from Romania

    Get PDF
    Funding statement. This work was supported by the Natural Environment Research Council (NE/F003382/1) and the Leverhulme Trust (F/00 128/AX) Acknowledgements. Archaeozoological analyses conducted by A. Ba˘la˘s¸escu were supported by three grants from the Romanian National Authority for Scientific Research, CNCS UEFISCDI (PN-II-RU-TE-20113-0146, PN-II-ID-PCE-2011-3-0982 and PN-IIID-PCE-2011-3-1015). We thank the archeologists Ca˘ta˘lin Bem, Alexandru Dragoman, Valentin Dumitras¸cu, Laura Dietrich, Raluca Koga˘lniceanu, Cristian Micu, Sta˘nica Pandrea, Valentin Parnic, George Trohani, Valentina Voinea for the material they generously provided. We thank the many institutions and individuals that provided sample material and access to collections, especially the curators of the Museum fu¨r Naturkunde, Berlin; Muse´um National d’Histoire Naturelle, Paris; Muse´um d’Histoire Naturelle, Gene`ve; Museum fu¨r Haustierkunde, Halle; National Museum of Natural History, Washington; The Field Museum, Chicago and The American Museum of Natural History, New York; The Naturhistorisches Museum, BernPeer reviewedPublisher PD

    Revisiting and modelling the woodland farming system of the early Neolithic Linear Pottery Culture (LBK), 5600–4900 B.C

    Get PDF
    International audienceThis article presents the conception and the conceptual results of a modelling representation of the farming systems of the Linearbandkeramik Culture (LBK). Assuming that there were permanent fields (PF) then, we suggest four ways that support the sustainability of such a farming system over time: a generalized pollarding and coppicing of trees to increase the productivity of woodland areas for foddering more livestock, which itself can then provide more manure for the fields, a generalized use of pulses grown together with cereals during the same cropping season, thereby reducing the needs for manure. Along with assumptions limiting bias on village and family organizations, the conceptual model which we propose for human environment in the LBK aims to be sustainable for long periods and can thereby overcome doubts about the PFs hypothesis for the LBK farming system. Thanks to a reconstruction of the climate of western Europe and the consequent vegetation pattern and productivity arising from it, we propose a protocol of experiments and validation procedures for both testing the PFs hypothesis and defining its eco-geographical area

    Tubulohelical membrane arrays: From the initial observation to the elucidation of nanophysical properties and cellular function

    Get PDF
    Lipids undergo self-assembly to form ordered nonlamellar, nanoperiodic arrays both in vitro and in vivo. While engineering of such membrane arrays for technical devices is envisaged, we know little about their cellular function. Do they represent building blocks of an inherent cellular nanotechnology? Prospects for answering this question could be improved if the nanophysical properties of the membrane arrays could be studied in the context of specific cellular functions. Therefore, we draw attention to exceptional complex membrane arrays found in the renal epithelial cell line PtK2 that could provide perfect conditions for both biophysical and cell functional studies. The so-called tubulohelical membrane arrays (TUHMAs) combine nanoperiodicity of lipid membranes with that of helix-like proteinaceous core structures. Strikingly, they show several characteristics of dynamic, microtubule-associated single organelles. Our initial data indicate that TUHMA formation occurs in the depth of the cytoplasm under participation of cytoplasmic nucleoporins. Once matured, they may fuse with the nuclear membrane in polarized positions, either perpendicularly or in parallel to the nucleus. As a starting point for the initiation of functional studies we found a connection between TUHMAs and primary cilia, indicated by immunolabeling patterns of detyrosynated tubulin and cytoplasmic nucleoporins. We discuss these observations in the context of the ciliary cycle and of the specific requirement of ciliated renal epithelial cells for oriented cell division. Finally, we raise the question of whether putative nanooptical properties of TUHMAs could serve for communicating orientation between dividing cells

    The multiple faces of self-assembled lipidic systems

    Get PDF
    Lipids, the building blocks of cells, common to every living organisms, have the propensity to self-assemble into well-defined structures over short and long-range spatial scales. The driving forces have their roots mainly in the hydrophobic effect and electrostatic interactions. Membranes in lamellar phase are ubiquitous in cellular compartments and can phase-separate upon mixing lipids in different liquid-crystalline states. Hexagonal phases and especially cubic phases can be synthesized and observed in vivo as well. Membrane often closes up into a vesicle whose shape is determined by the interplay of curvature, area difference elasticity and line tension energies, and can adopt the form of a sphere, a tube, a prolate, a starfish and many more. Complexes made of lipids and polyelectrolytes or inorganic materials exhibit a rich diversity of structural morphologies due to additional interactions which become increasingly hard to track without the aid of suitable computer models. From the plasma membrane of archaebacteria to gene delivery, self-assembled lipidic systems have left their mark in cell biology and nanobiotechnology; however, the underlying physics is yet to be fully unraveled
    corecore