1,011 research outputs found

    Quality of Life and Personality Traits in Patients with Malignant Pleural Mesothelioma and Their First-Degree Caregivers.

    Get PDF
    Asbestos exposure causes significant pleural diseases, including malignant pleural mesothelioma (MPM). Taking into account the impact of MPM on emotional functioning and wellbeing, this study aimed to evaluate the quality of life and personality traits in patients with MPM and their first-degree caregivers through the World Health Organization Quality of Life–BREF (WHOQOL-BREF) and the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF). The sample was composed of 27 MPM patients, 55 first-degree relatives enrolled in Casale Monferrato and Monfalcone (Italy), and 40 healthy controls (HC). Patients and relatives reported poorer physical health than the HC. Patients had a higher overall sense of physical debilitation and poorer health than relatives and the HC, more numerous complaints of memory problems and difficulties in concentrating, and a greater belief that goals cannot be reached or problems solved, while often claiming that they were more indecisive and inefficacious than the HC. First-degree relatives reported lower opinions of others, a greater belief that goals cannot be reached or problems solved, support for the notion that they are indecisive and inefficacious, and were more likely to suffer from fear that significantly inhibited normal activities than were HC. In multinomial regression analyses, partial models indicated that sex, physical comorbidities, and the True Response Inconsistency (TRIN-r), Malaise (MLS), and Behavior-Restricting Fears (BRF) dimensions of the MMPI-2-RF had significant effects on group differences. In conclusion, health care providers should assess the ongoing adjustment and emotional wellbeing of people with MPM and their relatives, and provide support to reduce emotional distress

    Conduit dynamics and post-explosion degassing on Stromboli:a combined UV camera and 1 numerical modelling treatment

    Get PDF
    Recent gas flux measurements have shown that strombolian explosions are often followed by periods of elevated flux, or ‘gas codas’, with durations of order a minute. Here, we present UV camera data from 200 events recorded at Stromboli volcano to constrain the nature of these codas for the first time, providing estimates for combined explosion plus coda SO2 masses of ≈ 18 – 225 kg. Numerical simulations of gas slug ascent show that substantial proportions of the initial gas mass can be distributed into a train of ‘daughter bubbles’ released from the base of the slug, which we suggest, generate the codas, on bursting at the surface. This process could also cause transitioning of slugs into cap bubbles, significantly reducing explosivity. This study is the first attempt to combine high temporal resolution gas flux data with numerical simulations of conduit gas flow to investigate volcanic degassing dynamics

    Observability of Forming Planets and their Circumplanetary Disks I. -- Parameter Study for ALMA

    Full text link
    We present mock observations of forming planets with ALMA. The possible detections of circumplanetary disks (CPDs) were investigated around planets of Saturn, 1, 3, 5, and 10 Jupiter-masses that are placed at 5.2 AU from their star. The radiative, three dimensional hydrodynamic simulations were then post-processed with RADMC3D and the ALMA Observation Simulator. We found that even though the CPDs are too small to be resolved, they are hot due to the accreting planet in the optically thick limit, therefore the best chance to detect them with continuum observations in this case is at the shortest ALMA wavelengths, such as Band 9 (440 microns). Similar fluxes were found in the case of Saturn and Jupiter-mass planets, as for the 10 MJup\mathrm{M_{Jup}} gas-giant, due to temperature weighted optical depth effects: when no deep gap is carved, the planet region is blanketed by the optically thick circumstellar disk leading to a less efficient cooling there. A test was made for a 52 AU orbital separation, showed that optically thin CPDs are also detectable in band 7 but they need longer integration times (>>5hrs). Comparing the gap profiles of the same simulation at various ALMA bands and the hydro simulation confirmed that they change significantly, first because the gap is wider at longer wavelengths due to decreasing optical depth; second, the beam convolution makes the gap shallower and at least 25% narrower. Therefore, caution has to be made when estimating planet masses based on ALMA continuum observations of gaps.Comment: Accepted for publication at MNRAS. Typos are corrected since previous version. 11 pages, 5 tables, 4 figure

    AB0901 PREVALENCE OF OSTEOPOROSIS IN ITALIAN POSTMENOPAUSAL WOMEN ACCORDING TO DEFRA ALGORITHM

    Get PDF
    Background:Osteoporosis is a recognized health problem and the burden of the disease is mostly associated with the occurrence of hip and vertebral fracture.Objectives:This study was aimed at evaluating the prevalence of osteoporosis in Italian postmenopausal women, defined by DeFRA calculation as a 10 years fracture risk equal or higher than 20%.Methods:This is a monocenter cohort study evaluating 1850 post-menopausal women aged 50 years and older. All the participants were evaluated as far as anthropometrics. Defra questionnaire was administered and calculated with bone mineral density (DXA) measured at lumbar spine and femoral neck.Results:The prevalence of osteoporosis as assessed by DeFRA was 29.8% in the whole population, according to literature. The frequency of a risk fracture equal or higher than 20% varied from 7.9% in the group aged 50-59 years to 35% in subjects aged >80. Among clinical risk factors for fracture, the presence of a previous fracture (spine primarily) was the most commonly observed.Conclusion:Our data showed that about one third of post-menopausal women aged 50 and older in Italy has osteoporosis on the basis of DeFRA algorithm, with a high 10 years fracture risk. A previous fracture is the most common risk factor. The data should be considered in relation to the need to increase prevention strategies and therapeutic intervention.Disclosure of Interests:None declare

    Recent advances in ground-based ultraviolet remote sensing of volcanic SO2 fluxes

    Get PDF
    Measurements of volcanic SO2 emission rates have been the mainstay of remote-sensing volcanic gas geochemistry for almost four decades, and they have contributed significantly to our understanding of volcanic systems and their impact upon the atmosphere. The last ten years have brought stepchange improvements in the instrumentation applied to these observations, which began with the application of miniature ultraviolet spectrometers that were deployed in scanning and traverse configurations, with differential optical absorption spectroscopy evaluation routines. This study catalogs the more recent empirical developments, including: ultraviolet cameras; wideangle field-of-view differential optical absorption spectroscopy systems; advances in scanning operations, including tomography; and improved understanding of errors, in particular concerning radiative transfer. Furthermore, the outcomes of field deployments of sensors during the last decade are documented, with respect to improving our understanding of volcanic dynamics and degassing into the atmosphere

    Vulcamera: a program for measuring volcanic SO2 using UV cameras

    Get PDF
    We report here on Vulcamera, a stand-alone program for the determination of volcanic SO2 fluxes using ultraviolet cameras. The code enables field image acquisition and all the required post-processing operations

    High time resolution fluctuations in volcanic carbon dioxide degassing from Mount Etna

    Get PDF
    We report here on the first record of carbon dioxide gas emission rates from a volcano, captured at ≈ 1 Hz. These data were acquired with a novel technique, based on the integration of UV camera observations (to measure SO2 emission rates) and field portable gas analyser readings of plume CO2/SO2 ratios. Our measurements were performedat the North East crater of Mount Etna, southern Italy, and the data reveal strong variability in CO2 emissions over timescales of tens to hundreds of seconds, spanning two orders of magnitude. This carries importantimplications for attempts to constrain global volcanic CO2 release to the atmosphere, and will lead to an increased insight into short term CO2 degassing trends. A common oscillation in CO2 and SO2 emission rates in addition to the CO2/SO2 ratios was observed at periods of ≈ 89 s. Our results are furthermore suggestive of an intriguing temporal lag between oscillations in CO2 emissions and seismicity at periods of ≈ 300–400 s, with peaks and troughs in the former series leading those in the latter by ≈ 150 s. This work opens the way to the acquisition of further datasets with this methodology across a range of basaltic systems to better our understandingof deep magmatic processes and of degassing links to manifest geophysical signals

    Hydrogen in the gas plume of an open-vent volcano, Mount Etna, Italy

    Get PDF
    We report here on the first hydrogen determinations in the volcanic gas plume of Mount Etna, in Italy, which we obtained during periodic field surveys on the volcano’s summit area with an upgraded MultiGAS. Using a specific (EZT3HYT) electrochemical sensor, we resolved H2 concentrations in the plume of 1–3 ppm above ambient (background) atmosphere and derived H2‐SO2 and H2‐H2O plume molar ratios of 0.002–0.044 (mean 0.013) and 0.0001–0.0042 (mean 0.0018), respectively. Taking the above H2‐SO2 ratios in combination with a time‐averaged SO2 flux of 1600 Gg yr−1, we evaluate that Etna contributes a time‐averaged H2 flux of ∌0.65 Gg yr−1, suggesting that the volcanogenic contribution to the global atmospheric H2 budget (70,000–100,000 Gg yr−1) is marginal. We also use our observed H2‐H2O ratios to propose that Etna’s passive plume composition is (at least partially) representative of a quenched (temperatures between 750°C and 950°C) equilibrium in the gas‐magma system, at redox conditions close to the nickel‐nickel oxide (NNO) mineral buffer. The positive dependence between H2‐SO2, H2‐H2O, and CO2‐SO2 ratios suggests that H2 is likely supplied (at least in part) by deeply rising CO2‐rich gas bubbles, fluxing through a CO2‐depleted shallow conduit magma.PublishedB102041.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive2.4. TTC - Laboratori di geochimica dei fluidiJCR Journalrestricte

    Periodic volcanic degassing behavior: The Mount Etna example

    Get PDF
    In contrast to the seismic and infrasonic energy released from quiescent and erupting volcanoes, which have long been known to manifest episodes of highly periodic behavior, the spectral properties of volcanic gas flux time series remain poorly constrained, due to a previous lack of hightemporal resolution gas-sensing techniques. Here we report on SO2 flux measurements, performed on Mount Etna with a novel UV imaging technique of unprecedented sampling frequency (0.5 Hz), which reveal, for the first time, a rapid periodic structure in degassing from this target. These gas flux modulations have considerable temporal variability in their characteristics and involve two period bands: 40–250 and 500–1200 s. A notable correlation between gas flux fluctuations in the latter band and contemporaneous seismic root-mean-square values suggests that this degassing behavior may be generated by periodic bursting of rising gas bubble trains at the magma-air interface.Published4818–48221.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveJCR Journalrestricte

    UV camera measurements of fumarole field degassing (La Fossa crater, Vulcano Island)

    Get PDF
    The UV camera is becoming an important new tool in the armory of volcano geochemists to derive high time resolution SO2 flux measurements. Furthermore, the high camera spatial resolution is particularly useful for exploring multiple-source SO2 gas emissions, for instance the composite fumarolic systems topping most quiescent volcanoes. Here, we report on the first SO2 flux measurements from individual fumaroles of the fumarolic field of La Fossa crater (Vulcano Island, Aeolian Island), which we performed using a UV camera in two field campaigns: in November 12, 2009 and February 4, 2010. We derived ~ 0.5 Hz SO2 flux time-series finding fluxes from individual fumaroles, ranging from 2 to 8.7 t d−1, with a total emission from the entire system of ~ 20 t d−1 and ~ 13 t d−1, in November 2009 and February 2010 respectively. These data were augmented with molar H2S/SO2, CO2/SO2 and H2O/SO2 ratios, measured using a portable MultiGAS analyzer, for the individual fumaroles. Using the SO2 flux data in tandem with the molar ratios, we calculated the flux of volcanic species from individual fumaroles, and the crater as a whole: CO2 (684 t d−1 and 293 t d−1), H2S (8 t d−1 and 7.5 t d−1) and H2O (580 t d−1 and 225 t d−1).Published47-52JCR Journalrestricte
    • 

    corecore