11,902 research outputs found

    Statistical properties of fractures in damaged materials

    Full text link
    We introduce a model for the dynamics of mud cracking in the limit of of extremely thin layers. In this model the growth of fracture proceeds by selecting the part of the material with the smallest (quenched) breaking threshold. In addition, weakening affects the area of the sample neighbour to the crack. Due to the simplicity of the model, it is possible to derive some analytical results. In particular, we find that the total time to break down the sample grows with the dimension L of the lattice as L^2 even though the percolating cluster has a non trivial fractal dimension. Furthermore, we obtain a formula for the mean weakening with time of the whole sample.Comment: 5 pages, 4 figures, to be published in Europhysics Letter

    Star Formation and AGN in the Core of the Shapley Supercluster: A VLA Survey of A3556, A3558, SC1327-312, SC1329-313, and A3562

    Full text link
    The core of the Shapley supercluster (A3556, A3558, SC1327-312, SC1329-313, and A3562) is an ideal region in which to study the effects of cluster mergers on the activity of individual galaxies. This paper presents the most comprehensive radio continuum investigation of the region, relying on a 63-pointing mosaic obtained with the Very Large Array yielding an areal coverage of nearly 7 square degrees. The mosaic provides a typical sensitivity of about 80 uJy at a resolution of 16", enabling detection of galaxies with star formation rates as low as 1 solar mass per year. The radio data are complemented by optical imaging in B and R, producing a catalog of 210 radio-detected galaxies with m_R <= 17.36 (M_R <= -19). At least 104 of these radio-detected galaxies are members of the supercluster on the basis of public velocity measurements. Across the entire core of the supercluster, there appears to be a significant deficit of radio galaxies at intermediate optical magnitudes (M_R between -21 and -22). This deficit is offset somewhat by an increase in the frequency with which brighter galaxies (M_R less than -22) host radio sources. More dramatic is the highly significant increase in the probability for fainter galaxies (M_R between -20 and -21) in the vicinity of A3562 and SC1329-313 to be associated with radio emission. The radio and optical data for these sources strongly suggest that these active galaxies are powered by star formation. In conjunction with recent X-ray analysis, this is interpreted as young starbursts related to the recent merger of SC1329-313 with A3562 and the rest of the supercluster.Comment: Accepted by AJ; 50 pages, including 16 figures (for full resolution PDF, see http://mywebpages.comcast.net/nealamiller2/Shapley_pp.pdf

    Emergency escape system uses self-braking mechanism on fixed cable

    Get PDF
    Slide-wire system with a twist level slide device incorporates automatic descent and braking for the safe and rapid evacuation of personnel from tall structures. This device is used on any tall structure that might require emergency evacuation. It is also used to transfer materials and equipment

    The time to extinction for an SIS-household-epidemic model

    Full text link
    We analyse a stochastic SIS epidemic amongst a finite population partitioned into households. Since the population is finite, the epidemic will eventually go extinct, i.e., have no more infectives in the population. We study the effects of population size and within household transmission upon the time to extinction. This is done through two approximations. The first approximation is suitable for all levels of within household transmission and is based upon an Ornstein-Uhlenbeck process approximation for the diseases fluctuations about an endemic level relying on a large population. The second approximation is suitable for high levels of within household transmission and approximates the number of infectious households by a simple homogeneously mixing SIS model with the households replaced by individuals. The analysis, supported by a simulation study, shows that the mean time to extinction is minimized by moderate levels of within household transmission

    Evidence for J and H-band excess in classical T Tauri stars and the implications for disk structure and estimated ages

    Full text link
    We argue that classical T Tauri stars (cTTs) possess significant non- photospheric excess in the J and H bands. We first show that normalizing the spectral energy distributions (SEDs) of cTTs to the J-band leads to a poor fit of the optical fluxes, while normalizing the SEDs to the Ic-band produces a better fit to the optical bands and in many cases reveals the presence of a considerable excess at J and H. NIR spectroscopic veiling measurements from the literature support this result. We find that J and H-band excesses correlate well with the K-band excess, and that the J-K and H-K colors of the excess emission are consistent with that of a black body at the dust sublimation temperature (~ 1500-2000 K). We propose that this near-IR excess originates at a hot inner rim, analogous to those suggested to explain the near-IR bump in the SEDs of Herbig Ae/Be stars. To test our hypothesis, we use the model presented by Dullemond et al. (2001) to fit the photometry data between 0.5 um and 24 um of 10 cTTs associated with the Chamaeleon II molecular cloud. The models that best fit the data are those where the inner radius of the disk is larger than expected for a rim in thermal equilibrium with the photospheric radiation field alone. In particular, we find that large inner rims are necessary to account for the mid infrared fluxes (3.6-8.0 um) obtained by the Spitzer Space Telescope. Finally, we argue that deriving the stellar luminosities of cTTs by making bolometric corrections to the J-band fluxes systematically overestimates these luminosities. The overestimated luminosities translate into underestimated ages when the stars are placed in the H-R diagram. Thus, the results presented herein have important implications for the dissipation timescale of inner accretion disks.Comment: 45 pages, 13 figure

    Dendritic and axonal targeting patterns of a genetically-specified class of retinal ganglion cells that participate in image-forming circuits.

    Get PDF
    BackgroundThere are numerous functional types of retinal ganglion cells (RGCs), each participating in circuits that encode a specific aspect of the visual scene. This functional specificity is derived from distinct RGC morphologies and selective synapse formation with other retinal cell types; yet, how these properties are established during development remains unclear. Islet2 (Isl2) is a LIM-homeodomain transcription factor expressed in the developing retina, including approximately 40% of all RGCs, and has previously been implicated in the subtype specification of spinal motor neurons. Based on this, we hypothesized that Isl2+ RGCs represent a related subset that share a common function.ResultsWe morphologically and molecularly characterized Isl2+ RGCs using a transgenic mouse line that expresses GFP in the cell bodies, dendrites and axons of Isl2+ cells (Isl2-GFP). Isl2-GFP RGCs have distinct morphologies and dendritic stratification patterns within the inner plexiform layer and project to selective visual nuclei. Targeted filling of individual cells reveals that the majority of Isl2-GFP RGCs have dendrites that are monostratified in layer S3 of the IPL, suggesting they are not ON-OFF direction-selective ganglion cells. Molecular analysis shows that most alpha-RGCs, indicated by expression of SMI-32, are also Isl2-GFP RGCs. Isl2-GFP RGCs project to most retino-recipient nuclei during early development, but specifically innervate the dorsal lateral geniculate nucleus and superior colliculus (SC) at eye opening. Finally, we show that the segregation of Isl2+ and Isl2- RGC axons in the SC leads to the segregation of functional RGC types.ConclusionsTaken together, these data suggest that Isl2+ RGCs comprise a distinct class and support a role for Isl2 as an important component of a transcription factor code specifying functional visual circuits. Furthermore, this study describes a novel genetically-labeled mouse line that will be a valuable resource in future investigations of the molecular mechanisms of visual circuit formation

    Preliminary Results from an Experimental Assessment of a Natural Laminar Flow Design Method

    Get PDF
    A 5.2% scale semispan model of the new Common Research Model with Natural Laminar Flow (CRM-NLF) was tested in the National Transonic Facility (NTF) at the NASA Langley Research Center. The model was tested at transonic cruise flight conditions with Reynolds numbers based on mean aerodynamic chord ranging from 10 to 30 million. The goal of the test was to experimentally validate a new design method, referred to as Crossflow Attenuated NLF (CATNLF), which shapes airfoils to have pressure distributions that delay transition on wings with high sweep and Reynolds numbers. Additionally, the test aimed to characterize the NTF laminar flow testing capabilities, as well as establish best practices for laminar flow wind tunnel testing. Preliminary results regarding the first goal of validating the new design method are presented in this paper. Experimental data analyzed in this assessment include surface pressure data and transition images. The surface pressure data acquired during the test agree well with computational fluid dynamics (CFD) results. Transition images at a variety of Reynolds numbers and angles of attack are presented and compared to computational transition predictions. The experimental data are used to assess transition due to a turbulent attachment line, as well as crossflow and Tollmien-Schlichting modal instabilities. Preliminary results suggest the CATNLF design method is successful at delaying transition on wings with high sweep. Initial analysis of the transition front images showed transition Reynolds numbers that exceed historic experimental values at similar sweep angles. , section lif

    The imprints of primordial non-gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects

    Full text link
    We study the effect of primordial nongaussianity on large-scale structure, focusing upon the most massive virialized objects. Using analytic arguments and N-body simulations, we calculate the mass function and clustering of dark matter halos across a range of redshifts and levels of nongaussianity. We propose a simple fitting function for the mass function valid across the entire range of our simulations. We find pronounced effects of nongaussianity on the clustering of dark matter halos, leading to strongly scale-dependent bias. This suggests that the large-scale clustering of rare objects may provide a sensitive probe of primordial nongaussianity. We very roughly estimate that upcoming surveys can constrain nongaussianity at the level |fNL| <~ 10, competitive with forecasted constraints from the microwave background.Comment: 16 pages, color figures, revtex4. v2: added references and an equation. submitted to PRD. v3: simplified derivation, additional reference
    • …
    corecore