787 research outputs found

    Distribution-free specification tests of conditional models

    Get PDF
    This article proposes a class of asymptotically distribution-free specification tests for parametric conditional distributions. These tests are based on a martingale transform of a proper sequential empirical process of conditionally transformed data. Standard continuous functionals of this martingale provide omnibus tests while linear combinations of the orthogonal components in its spectral representation form a basis for directional tests. Finally, Neyman-type smooth tests, a compromise between directional and omnibus tests, are discussed. As a special example we study in detail the construction of directional tests for the null hypothesis of conditional normality versus heteroskedastic contiguous alternatives. A small Monte Carlo study shows that our tests attain the nominal level already for small sample sizes.Publicad

    Heralded entanglement of two ions in an optical cavity

    Full text link
    We demonstrate precise control of the coupling of each of two trapped ions to the mode of an optical resonator. When both ions are coupled with near-maximum strength, we generate ion--ion entanglement heralded by the detection of two orthogonally polarized cavity photons. The entanglement fidelity with respect to the Bell state Ψ+\Psi^+ reaches F(91.9±2.5)F \geq (91.9\pm2.5)%. This result represents an important step toward distributed quantum computing with cavities linking remote atom-based registers

    X-ray emission from Planetary Nebulae. I. Spherically symmetric numerical simulations

    Get PDF
    (abridged) The interaction of a fast wind with a spherical Asymptotic Giant Branch (AGB) wind is thought to be the basic mechanism for shaping Pre-Planetary Nebulae (PPN) and later Planetary Nebulae (PN). Due to the large speed of the fast wind, one expects extended X-ray emission from these objects, but X-ray emission has only been detected in a small fraction of PNs and only in one PPN. Using numerical simulations we investigate the constraints that can be set on the physical properties of the fast wind (speed, mass-flux, opening angle) in order to produce the observed X-ray emission properties of PPNs and PNs. We combine numerical hydrodynamical simulations including radiative cooling using the code FLASH with calculations of the X-ray properties of the resulting expanding hot bubble using the atomic database ATOMDB. In this first study, we compute X-ray fluxes and spectra using one-dimensional models. Comparing our results with analytical solutions, we find some agreements and many disagreements. In particular, we test the effect of different time histories of the fast wind on the X-ray emission and find that it is determined by the final stage of the time history during which the fast wind velocity has its largest value. The disagreements which are both qualitative and quantitative in nature argue for the necessity of using numerical simulations for understanding the X-ray properties of PNs.Comment: 17 pages, accepted for publication in ApJ (July 27, 2006), uses emulateap

    Quantum-state transfer from an ion to a photon

    Get PDF
    A quantum network requires information transfer between distant quantum computers, which would enable distributed quantum information processing and quantum communication. One model for such a network is based on the probabilistic measurement of two photons, each entangled with a distant atom or atomic ensemble, where the atoms represent quantum computing nodes. A second, deterministic model transfers information directly from a first atom onto a cavity photon, which carries it over an optical channel to a second atom; a prototype with neutral atoms has recently been demonstrated. In both cases, the central challenge is to find an efficient transfer process that preserves the coherence of the quantum state. Here, following the second scheme, we map the quantum state of a single ion onto a single photon within an optical cavity. Using an ion allows us to prepare the initial quantum state in a deterministic way, while the cavity enables high-efficiency photon generation. The mapping process is time-independent, allowing us to characterize the interplay between efficiency and fidelity. As the techniques for coherent manipulation and storage of multiple ions at a single quantum node are well established, this process offers a promising route toward networks between ion-based quantum computers.Comment: 6 pages, 3 figure

    Ovartorsion nach In-vitro-Fertilisation

    Get PDF
    Zusammenfassung: Das Risiko für das Auftreten einer Adnextorsion nach einer IVF-Behandlung wird auf ca. 0,1% geschätzt. Aufgrund der Seltenheit und des initial oft unauffälligen sonographischen Befundes wird eine Adnextorsion oft fehldiagnostiziert und die Behandlung verzögert. Die einzige effektive Therapie ist eine sofortige Laparoskopie, Retorsion und Verkleinerung des Ovar

    Functional kernel estimators of conditional extreme quantiles

    Get PDF
    We address the estimation of "extreme" conditional quantiles i.e. when their order converges to one as the sample size increases. Conditions on the rate of convergence of their order to one are provided to obtain asymptotically Gaussian distributed kernel estimators. A Weissman-type estimator and kernel estimators of the conditional tail-index are derived, permitting to estimate extreme conditional quantiles of arbitrary order.Comment: arXiv admin note: text overlap with arXiv:1107.226

    Hydrodynamical simulations of the jet in the symbiotic star MWC 560 III. Application to X-ray jets in symbiotic stars

    Full text link
    In papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high density ambient medium. Since the pulsed emission of the jet creates internal shocks and since the jet velocity is very high, the jet bow shock and the internal shocks are heated to high temperatures and should therefore emit X-ray radiation. In this paper, we investigate in detail the X-ray properties of the jets in our models. We have focused our study on the total X-ray luminosity and its temporal variability, the resulting spectra and the spatial distribution of the emission. Temperature and density maps from our hydrodynamical simulations with radiative cooling presented in the second paper are used together with emissivities calculated with the atomic database ATOMDB. The jets in our models show extended and variable X-ray emission which can be characterized as a sum of hot and warm components with temperatures that are consistent with observations of CH Cyg and R Aqr. The X-ray spectra of our model jets show emission line features which correspond to observed features in the spectra of CH Cyg. The innermost parts of our pulsed jets show iron line emission in the 6.4 - 6.7 keV range which may explain such emission from the central source in R Aqr. We conclude that MWC 560 should be detectable with Chandra or XMM-Newton, and such X-ray observations will provide crucial for understanding jets in symbiotic stars.Comment: 10 pages, 12 figures, accepted for publication in ApJ, uses emulateap

    Young stellar object jet models: From theory to synthetic observations

    Get PDF
    Astronomical observations, analytical solutions and numerical simulations have provided the building blocks to formulate the current theory of young stellar object jets. Although each approach has made great progress independently, it is only during the last decade that significant efforts are being made to bring the separate pieces together. Building on previous work that combined analytical solutions and numerical simulations, we apply a sophisticated cooling function to incorporate optically thin energy losses in the dynamics. On the one hand, this allows a self-consistent treatment of the jet evolution and on the other, it provides the necessary data to generate synthetic emission maps. Firstly, analytical disk and stellar outflow solutions are properly combined to initialize numerical two-component jet models inside the computational box. Secondly, magneto-hydrodynamical simulations are performed in 2.5D, following properly the ionization and recombination of a maximum of 2929 ions. Finally, the outputs are post-processed to produce artificial observational data. The first two-component jet simulations, based on analytical models, that include ionization and optically thin radiation losses demonstrate promising results for modeling specific young stellar object outflows. The generation of synthetic emission maps provides the link to observations, as well as the necessary feedback for the further improvement of the available models.Comment: accepted for publication A&A, 20 pages, 11 figure
    corecore