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This article proposes a class of asymptotically distribution-free specification tests for parametric conditional

distributions. These tests are based on a martingale transform of a proper sequential empirical process of conditionally

transformed data. Standard continuous functionals of this martingale provide omnibus tests while linear combinations of

the orthogonal components in its spectral representation form a basis for directional tests. Finally, Neyman-type smooth

tests, a compromise between directional and omnibus tests, are discussed. As a special example we study in detail the

construction of directional tests for the null hypothesis of conditional normality versus heteroskedastic contiguous

alternatives. A small Monte Carlo study shows that our tests attain the nominal level already for small sample sizes.
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1. Introduction

The correct specification of a statistical model is important for several reasons. First, it provides a

venient framework to describe and understand, for example, the dynamics of a time series or a causal
relation between independent and dependent variables in regression. In each case it turns out that conditional
quantities like autoregressive functions or conditional distributions are of major interest, while marginal
distributions of explanatory variables may be considered as parametric or nonparametric nuisance parameter
functions. The choice of the model has some consequences on the estimation of unknown parameters and
hence on the interpretation of data or the prediction of future values of a dependent variable. The validity of
statistical inferences based on conditional maximum likelihood principle, e.g., relies on the correct
specification of the conditional distribution model. In particular, the popular Lagrange multiplier and
likelihood ratio tests on parameter restrictions are invalid under misspecification, though robust but inefficient
inferences are possible. However, classical procedures are optimal under a correct specification. Applications
using conditional maximum likelihood are available in abundant supply in economics, as well as in any other
disciplines where statistical inference is indispensable. The correct specification of conditional distributions is
especially crucial in microeconometrics and biostatistics, where parameter identification is sustained by a
correct specification. In these cases, parameter estimates are inconsistent under misspecification. See the
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classical monograph by Maddala (1983) on limited-dependent and qualitative variables models, Cameron and
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Trivedi (1998) for count data models, or Lancaster (1990) for duration models.
In the simple case of independent identically distributed observations the history of goodness-of-fit tests

started with the classical w2-test for cell probabilities. For continuous variables most of the procedures, like
Kolmogorov–Smirnov and Cramér–von Mises tests, are based on proper functionals of the empirical process.
When the model to be tested is composite, the need to estimate unknown parameters has some impact on the
distributional character under the null model so that available tables of critical values are no longer valid. See
the work of Gikhman (1953) and Kac et al. (1955) for some early fundamental contributions in this context.
A formal derivation of the limit process is due to Durbin (1973) and Neuhaus (1973, 1976), among others. For
practical purposes, critical values of the tests can be obtained either through resampling or through the
orthogonal components in the spectral representation of the underlying empirical process, as suggested by
Durbin et al. (1975).

A different approach was initiated by Khmaladze (1981), who proposed to transform the empirical process
to an appropriate martingale, which in distribution may then be approximated by a time-transformed
Brownian Motion. As a consequence, classical functionals of these processes like the Kolmogorov–Smirnov or
Cramér–von Mises test statistics become asymptotically distribution-free so that existing tables can be used.

In this paper we are interested, for a multivariate observation ðX ;Y Þ, in the conditional distribution of Y

given X ¼ x. For the related question of testing just the conditional mean and not the whole conditional
distributional structure, the literature is much more elaborate. Härdle and Mammen (1993) were among the
first to compare parametric and nonparametric fits. These tests require some smoothing to the effect that the
power of these tests may depend on the choice of the smoothing parameter. Stute (1997) investigated so-called
integrated regression function (or cusum) processes which avoid smoothing and at the same time allow for a
principal component analysis. If we replace (in our notation) Y by indicators 1fYpyg, these approaches lead to
tests of conditional probability models and may be found in Andrews (1997). In particular he investigated the
Kolmogorov–Smirnov test. Due to the complicated distributional character of the test statistic, a bootstrap
approximation was proposed and studied. The martingale transformation of the cusum process for fixed
design and linear regression is due to Brown et al. (1975). The random design case with a possibly nonlinear
regression function has been dealt with in Stute et al. (1998), while applications to time series and generalized
linear models may be found in Koul and Stute (1999) and Stute and Zhu (2002). See also Nikabadze and Stute
(1997) and Khmaladze and Koul (2004). Zheng (2000) has extended the smoothing approach to specification
tests of conditional distributions, while Bai (2003) has applied Khmaladze’s martingale approach to tests of
the marginal distribution of time series innovations.

To motivate the approach of the present paper we recall a fundamental result due to Rosenblatt (1952).
Namely, let ðX ;Y Þ be a bivariate random vector with an unknown continuous distribution function F . Denote
with FX the marginal distribution function of X and let F Y jX ðyjxÞ be the conditional distribution function of
Y given X ¼ x evaluated at y. Given FX , F is uniquely determined through FY jX and vice versa.

In nonparametric testing for F , it is known that tests based on the empirical distribution function are no
longer distribution-free. In this context, Rosenblatt (1952) used FX and F Y jX to introduce a transformation
T ¼ TðX ;Y Þ ¼ ðU ;V Þ of ðX ;Y Þ, which maps ðX ;Y Þ into a vector ðU ;V Þ such that U and V are independent
and uniformly distributed on [0,1]. Just put U ¼ FX ðX Þ and V ¼ F Y jX ðY jX Þ. It is easy to recover ðX ;Y Þ from
ðU ;V Þ. Actually, we have with probability one ðX ;Y Þ ¼ ðF�1X ðUÞ;F

�1
Y jX ðV jF

�1
X ðUÞÞ, where G�1 denotes the

quantile function of a distribution function G. The transformation T can be extended to higher dimensions,
but in this paper, for most of the time, we shall stick to the bivariate case. We rather study the important
situation when X ¼ ZTd0, for a p� 1 random vector Z and an unknown parameter vector d0, so that the
multidimensionality of the model enters through a proper projection of a random vector Z. The extension to
the case where X ¼ mðZ; d0Þ for a suitably smooth m is routine. These so-called dimension reducing models
are popular in applied fields and naturally lead to an input–output analysis in which, at an intermediate step,
the independent variable is univariate. This is relevant in many econometric applications, where one assumes a
regression model with innovations independent of the explanatory variables, e.g., limited-dependent variable
models.

The Rosenblatt transform T constitutes the extension of the transformation U ¼ FX ðX Þ, which is basic in
the analysis of univariate data and leads to many distribution-free procedures based on ranks or
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Kolmogorov–Smirnov and Cramér–von Mises discrepancies. Since ordering is unavailable in the multivariate
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case we propose to order the inputs through the U ’s treating the V ’s as the associated concomitants. This leads
to a sequential version of an empirical process based on concomitants. Its statistical analysis will be the focus
of this paper.

To be more precise, assume that we observe a sample of independent identically distributed data with the
same distribution as ðX ;Y Þ, say ðX 1;Y 1Þ; . . . ; ðX n;Y nÞ. Set

ðUi;V iÞ ¼ TðX i;Y iÞ; 1pipn

and consider the associated uniform empirical distribution function

Gnðu; vÞ:¼
1

n

Xn

i¼1

1fUipug1fVipvg for 0pu; vp1.

Here 1A is the indicator function of the event A. The empirical process

anðu; vÞ:¼
ffiffiffi
n
p
½Gnðu; vÞ � uv� for 0pu; vp1

is a random element in the Skorokhod space D½0; 1�2, endowed with a proper topology. See, for example, Straf
(1971), Neuhaus (1971) and Bickel and Wichura (1971). Note that the distribution of an is free of F .
Throughout this paper we shall denote with ‘‘�!d’’ weak convergence or convergence in distribution. It is
then well known that in D½0; 1�2 we have

an�!dB1, (1.1)

where B1 is a tied-down Brownian sheet. That is, a centered Gaussian process on the unit square with
covariance kernel

E½B1ðu1; v1ÞB
1ðu2; v2Þ� ¼ ðu1 ^ u2Þ � ðv1 ^ v2Þ � u1u2v1v2.

Functionals of the empirical process an are distribution-free and form a basis for goodness-of-fit tests of
simple hypotheses on F . They are, however, unsuitable for testing the specification of FY jX when F X is
unknown. In order to circumvent this problem we propose to substitute Ui by the normalized ranks of the
X i’s:

Uni ¼ F XnðX iÞ; 1pipn,

with FXn denoting the empirical distribution function of X 1; . . . ;X n. This leads to

Ḡnðu; vÞ ¼
1

n

Xn

i¼1

1fUnipug1fVipvg

¼
1

n

Xn

i¼1

1fi=npug1fV ½i:n�pvg

¼
1

n

Xbnuc

i¼1

1fV ½i:n�pvg.

Here, V ½i:n� is the V -concomitant associated with X i:n, that is, V ½i:n� ¼ V j if X i:n ¼ X j with
X 1:npX 2:np � � �pX n:n denoting the set of X -order statistics. The empirical process associated with Ḡn

becomes

ānðu; vÞ:¼n1=2½Ḡnðu; vÞ � u � v�

¼ n1=2½Ḡnðu; vÞ � v � Ḡnðu; 1Þ� þ v �
bnuc � nu

n1=2
.
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Since the second term is negligible, it is natural to consider
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bnðu; vÞ:¼n1=2½Ḡnðu; vÞ � v � Ḡnðu; 1Þ�

¼
1

n1=2

Xbnuc

i¼1

½1fV ½i:n�pvg � v�,

which is the standard sequential empirical process of the concomitants. Notice that, since fV 1; . . . ;Vng and
fX 1; . . . ;X ng are independent, fV ½1:n�; . . . ;V ½n:n�g is a random permutation of fV1; . . . ;V ng. That is,
fV ½1:n�; . . . ;V ½n:n�g are independent identically distributed copies of V . It follows from classical empirical
process theory, see Shorack and Wellner (1986), that

bn�!dK in the space D½0; 1�2,

where K is the standard Kiefer process, a centered biparameter Gaussian process on the unit square with
covariance function

E½Kðu1; v1Þ � Kðu2; v2Þ� ¼ ðu1 ^ u2Þðv1 ^ v2 � v1 � v2Þ.

The Kiefer process can be represented in terms of the standard Brownian sheet B, a zero mean Gaussian
process with covariance function

E½Bðu1; v1Þ � Bðu2; v2Þ� ¼ ðu1 ^ u2Þðv1 ^ v2Þ,

namely as

Kðu; vÞ ¼ ð1� vÞ

Z v

0

Z u

0

1

1� v̄
Bðdū;dv̄Þ.

In practical situations, the conditional distribution functions FY jX are parametrically modeled, and the
hypothesis to be tested becomes

H0 : F Y jX 2F.

Here, F is a given family of parametric conditional distribution functions

F ¼ fFY jX ;y : y 2 Yg,

and Y � Rp is a proper parameter space. The alternative hypothesis may be specified or not. Under H0, there
exists a y0 2 Y such that FY jX ¼ FY jX ;y0 , and given a

ffiffiffi
n
p

�consistent estimator of y0, say yn, Ḡnðu; vÞ can be
replaced by

Ĝnðu; vÞ:¼
1

n

Xbnuc

i¼1

1
fV̂n½i:n�pvg,

with V̂ ni ¼ F Y jX ;yn
ðY ijX iÞ and V̂ n½i:n� denoting the V̂ -concomitant of X i:n. The final version of bn then becomes

b̂nðu; vÞ:¼n1=2½Ĝnðu; vÞ � v � Ĝnðu; 1Þ�

¼
1

n1=2

Xbnuc

i¼1

½1
fV̂n½i:n�pvg � v�.

The asymptotic distribution of b̂nð1; �Þ may be derived along the lines of Durbin (1973), who as already
mentioned established the weak limit of the univariate empirical process with estimated parameters. The
empirical process b̂nð1; �Þ has also been considered by Bai (2003) for testing _H0: EðF Y jX ;y0ðyjX ÞÞ ¼ F Y ðyÞ for
some y0 2 Y, with FY denoting the marginal distribution function of Y . The resulting test has trivial power
for testing H0 in all directions where _H0 is satisfied. Neuhaus (1971, 1976) extended Durbin’s (1973) results to
the multiparameter case and considered general contiguous nonparametric alternatives. See also Bai (1994,
1996).
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We derive the asymptotic distribution of b̂n under the type of regularity conditions on F corresponding to
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Neuhaus (1976) and Durbin (1973):

A1. Assume that qF ðyjxÞ=qy exists for all ðx; yÞ 2 R2 and each component of the vector of functions
Y jX ;y
is

wh
qyðu; vÞ:¼

Z u

0

q
qy

FY jX ;yðF
�1
Y jX ;yðvjF

�1
X ðūÞÞjF

�1
X ðūÞÞdū

continuous on ½0; 1�2 �Y.
Our first result is crucial for proving the weak convergence of b̂ . It provides a convenient representation of
n

b̂n in terms of bn and yn � y0.

Theorem 1. Under H0 and for F satisfying A1, suppose that yn ¼ y0 þOPðn
�1=2Þ. Then we have

sup
ðu;vÞ2½0;1�2

jb̂nðu; vÞ � bnðu; vÞ þ qy0 ðu; vÞ
Tn1=2ðyn � y0Þj ¼ oPð1Þ.

In many situations yn admits a linear representation in terms of independent identically distributed random
variables, in which case we can identify the limit of b̂n.

A2. Assume that
 Xn
yn ¼ y0 þ
1

n
i¼1

‘y0ðX i;Y iÞ þ oPðn
�1=2Þ,

ere, for each x 2 R and every y 2 Y,Z

R

‘yðx; yÞFY jX ;yðdyjxÞ ¼ 0

and

sup
x2R

Z
R

‘yðx; yÞ‘yðx; yÞ
TF Y jX ;yðdyjxÞ

���� ����o1.

When F is given through its conditional densities f Y jX ;y, say, a natural estimator of y0 is the conditional
maximum likelihood estimator:

yn ¼ arg max
y2Y

Xn

i¼1

ln f Y jX ;yðY ijX iÞ.

In this case,

‘yðx; yÞ ¼ I�1y
q
qy

ln f Y jX ;yðyjxÞ,

where

Iy ¼ E
q
qy

ln f Y jX ;yðY jX Þ
q

qyT
ln f Y jX ;yðY jX Þ

� �
is the ‘‘conditional’’ information matrix:

qyðu; vÞ ¼

Z v

0

Z u

0

q
qy

ln f Y jX ;yðF
�1
Y jX ;yðv̄jF

�1
X ðūÞÞjF

�1
X ðūÞÞdūdv̄

�

Z v

0

Z u

0

jyðū; v̄Þdūdv̄. ð1:2Þ

The next result is a consequence of Theorem 1 and A2.

Corollary 1. Under the conditions in Theorem 1 and A2,

b̂n�!db̂1 in the space D½0; 1�2,
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with

ARTICLE IN PRESS
M.A. Delgado, W. Stute / Journal of Econometrics 143 (2008) 37–5542
b̂1ðu; vÞ ¼ Kðu; vÞ � qy0 ðu; vÞ
T
�

Z 1

0

Z 1

0

‘y0 ðF
�1
X ðūÞ;F

�1
Y jX ;y0 ðv̄jF

�1
X ðūÞÞÞBðdū;dv̄Þ.

If an observation ðX ;Y ;Z; . . .Þ is multivariate with more than two components, the Rosenblatt
transformation also works but requires, besides F and FY jX , also the specifications of F ZjX ;Y ;.... Rather
than this, we now discuss the case when X ¼ ZTd0. Along with yn, let dn be a

ffiffiffi
n
p

-consistent estimator of d0.
For example we could take

ðyn; dnÞ ¼ argmax
ðy;dÞ

Xn

i¼1

ln f Y jX ;yðY ijZ
T
i dÞ.

Consider the following modification of b̂n:

~bnðu; vÞ:¼
1

n1=2

Xbnuc

i¼1

½1f ~V n½i:n�pvg � v� � n1=2½ ~Gnðu; vÞ � v ~Gnðu; 1Þ�,

where now ~V n½i:n� is the ith V̂ -concomitant with respect to the ordered ~X n1; . . . ; ~X nn, where ~X ni ¼ ZT
i dn is in

place of X i ¼ ZT
i d0. In this case the need to estimate d0 requires an additional correction in the expansion of

the associated ~Gn.

For the sake of simplicity we only consider the case when y and d have no coordinates in common.
Otherwise the derivative needs to be taken only with respect to the components of d which do not appear in y.

Theorem 2. Under the conditions of Theorem 1, assume that FY jX ;yðyjxÞ is also differentiable with respect to x

and let dn and yn be
ffiffiffi
n
p

�consistent estimators of d0 and y0, respectively. Assume also that Z has finite second

moments. Then

sup
0pu;vp1

j ~bnðu; vÞ � bnðu; vÞ þ qy0;d0 ðu; vÞ
Tn1=2ðyn � y0Þ þ q1

y0;d0ðu; vÞ
Tn1=2ðdn � d0Þj ¼ oPð1Þ.

Here qy0;d0 is the q-function from before, but with FX ðxÞ ¼ PðZTd0pxÞ now depending on the unknown d0 and

q1
y0;d0 ðu; vÞ:¼E 1fFX ðZ

Td0ÞpugZ
q
qx

FY jX ;y0 ðF
�1
Y jX ;y0 ðvjZ

Td0ÞjZTd0Þ
� �

¼

Z u

0

rðF�1X ðūÞÞ
q
qx

F Y jX ;y0ðF
�1
Y jX ;y0 ðvjF

�1
X ðūÞÞjF

�1
X ðūÞÞdū ð1:3Þ

with rðxÞ ¼ E½ZjX ¼ x� denoting the vector-valued regression function of Z given X ¼ ZTd0 ¼ x.

Typically, dn also admits a representation in terms of independent identically distributed random variables.
We also obtain an analogue of Corollary 1. Since, however, the limit process depends on unknown
parameters, the unknown FX and the model F, tests based on b̂n and ~bn are still not (asymptotically)
distribution-free.

The rest of the paper is organized as follows. The next section presents a transformation of the sequential
empirical process of estimated concomitants, which converges in distribution to the standard biparameter
Brownian sheet. Hence, continuous functionals of this transformed process are suitable for testing composite
hypotheses. Power considerations are studied in Section 3, where we provide the limiting distribution of the
transformed process under contiguous alternatives converging to the null at the parametric rate n�1=2. In this
section, we also provide the spectral decomposition of the transformed process and propose test statistics
based on linear combinations of the principal components. Furthermore we derive test statistics consisting of
the optimal combination of principal components, thus maximizing the power in the direction of a particular
contiguous alternative. The results of a Monte Carlo experiment are reported in Section 4. Proofs are
postponed to the appendix.
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2. Distribution-free transformation of the sequential empirical process with estimated concomitants
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The martingale transformation of b̂n to be discussed now will turn out to be a composition of two operators.
In the first step we transform b̂n so that in the limit the Kiefer process will be replaced by the Brownian sheet.
In the next step we shall apply a model-dependent transformation which is designed to give us distribution-free
processes.

Now, as mentioned earlier, the Kiefer process can be represented in terms of independent Gaussian
increments, namely as a stochastic integral with respect to a Brownian sheet:

Kðu; vÞ ¼ ð1� vÞ

Z v

0

Z u

0

1

1� v̄
Bðdū; dv̄Þ.

Inverting this last expression, we obtain

B ¼L0K ,

where L0 is the linear operator defined as

L0mðu; vÞ ¼ mðu; vÞ �

Z v

0

1

1� v̄

Z 1

v̄

Z u

0

mðd ~u;d~vÞdv̄,

for a generic function m : ½0; 1�2! R.
Hence, tests on simple hypotheses on FY jX can alternatively be based on the transformed process

L0bnðu; vÞ ¼ n1=2L0Ḡnðu; vÞ ¼
1

n1=2

Xbnuc

i¼1

½1fV ½i:n�pvg þ log½1� ðv ^ V ½i:n�Þ��.

Note that this is the time-sequential version of the martingale part in the Doob–Meyer decomposition of the
uniform empirical process. Applying the continuous mapping theorem and the weak convergence of bn, we
have, under H0,

L0bn�!dB in the space D½0; 1�2.

Similarly

L0b̂nðu; vÞ ¼ n1=2L0Ĝnðu; vÞ ¼
1

n1=2

Xbnuc

i¼1

½1
fV̂ n½i:n�pvg þ log½1� ðv ^ V̂n½i:n�Þ��,

while for L0
~bn the V̂ n½i:n� need to be replaced with ~V n½i:n�.

Assuming that the conditions in Corollary 1 are satisfied, then

L0b̂n�!dL0b̂1,

with

L0b̂1ðu; vÞ ¼ Bðu; vÞ �

Z v

0

Z u

0

hy0 ðū; v̄Þ
T dūdv̄ �

Z 1

0

Z 1

0

‘̄y0 ð ~u; ~vÞBðd ~u;d~vÞ,

where

L0qy0ðu; vÞ ¼

Z v

0

Z u

0

hy0 ðū; v̄Þdūdv̄

and

‘̄yðu; vÞ ¼ ‘yðF
�1
X ðuÞ;F

�1
Y jX ;yðvjF

�1
X ðuÞÞÞ.

If, as in the case of the maximum likelihood estimator, see (1.2), qy has a Lebesgue density jy, we have

hyðu; vÞ ¼ jyðu; vÞ �
1

1� v

Z 1

v

jyðu; v̄Þdv̄. (2.1)
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From the above representation of L0b̂n we see that K has been replaced by B. Actually, unlike b̂1, L0b̂1
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admits the same type of representation as the limiting distribution of the standard biparameter empirical
process with estimated parameters. This fact suggests to apply the scanning innovation approach proposed by
Khmaladze (1988, 1993) in order to obtain an empirical process converging in distribution to the biparameter
Brownian sheet under the null. For this, let us consider a family of measurable subsets,

S ¼ fSðu;vÞ : ðu; vÞ 2 ½0; 1�
2g,

satisfying the following properties:

1. For every ðu1; v1Þ; ðu2; v2Þ 2 ½0; 1�
2, Sðu1;v1Þ � Sðu2;v2Þ or Sðu2;v2Þ � Sðu1;v1Þ, that is, S is linearly ordered.S T
2
2.

3.

ðu;vÞSðu; vÞ ¼ ½0; 1� and ðu;vÞSðu; vÞ ¼ ;.

If Sðui ;viÞ 2S, i ¼ 1; 2; . . . then lim infn Sðun;vnÞ 2S.

4.
 Sðu1;v1ÞnSðu2;v2Þ ! S0 as ðu1; v1Þ ! ðu2; v2Þ,
w
here S0 is a set with Lebesgue measure equal to zero.

Examples of sets satisfying these conditions are

S ¼ f½0; 1� � ½0; v�; v 2 ½0; 1�g, (2.2)

S ¼ f½0; v� � ½0; v�; v 2 ½0; 1�g. (2.3)

For any particular family of sets S, let us define the matrix

Ayðu; vÞ ¼

Z Z
S̄ðu;vÞ

hyðū; v̄Þhyðū; v̄Þ
T dū dv̄,

where S̄ðu; vÞ denotes the complement of Sðu; vÞ. The scanning innovation of L0b̂1 is given by ðLy0 �L0Þb̂1,
where Ly is the linear operator defined as

Lymðu; vÞ ¼ mðu; vÞ �

Z v

0

Z u

0

hyðū; v̄Þ
TA�1y ðū; v̄Þ

Z Z
S̄ðū;v̄Þ

hyð ~u; ~vÞmðd ~u;d~vÞdūdv̄,

for a generic function m : ½0; 1�2 ! R.
Usually, as it will be the case in this paper, it is assumed that the matrix Ay0ðu; vÞ is nonsingular for
ðu; vÞ 2 ½0; 1Þ2, that is, that the components of hy0 are linearly independent in every interval ½0; u� � ½0; v�.
However, there are families of distributions where this condition is not fulfilled. In such a situation A�1y ð�; �Þ is
the generalized inverse of Ayð�; �Þ satisfying

A�1y ð�; �Þ½Ayð�; �Þx� ¼
x if x 2 Image ðAyð�; �ÞÞ;

0 otherwise:

�
Interestingly, the transformation provided by the operator Ly is unique irrespective of the generalized inverse
used, as proved by Nikabadze (1997).

The choice of the sets in (2.2) is very convenient from the computational view point. In this case,

ðLy �L0Þb̂nðu; vÞ ¼L0b̂nðu; vÞ �

Z v

0

Z u

0

hyðū; v̄Þ
TA�1y ðv̄Þ

Z 1

0

Z 1

v̄

hyð ~u; ~vÞL0b̂nðd ~u;d~vÞdūdv̄,

where

AyðvÞ ¼

Z 1

0

Z 1

v

hyðū; v̄Þhyðū; v̄Þ
T dv̄dū

only depends on v.
The following theorem provides the weak convergence of the transformed sequential empirical process.

Since in most examples Ay is the null matrix when u or v equals 1, we shall, in the following, restrict our
processes to ½0; 1Þ2. The associated space D½0; 1Þ2 is endowed with the topology of Skorokhod convergence on
compact subsets of ½0; 1Þ2. For a related discussion of D½0;1Þ, see Pollard (1984).

8



Theorem 3. Under H0 and the conditions in Theorem 1,
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ðLy0 �L0Þb̂n�!dB in the space D½0; 1Þ2.

Since F X and y0 are unknown, the transformationLy0 is unavailable in practice and needs to be replaced by
its data-dependent analogue. For this, put

cLyn
mðu; vÞ ¼ mðu; vÞ �

Z v

0

Z u

0

ĥyn
ðū; v̄ÞTÂ

�1

yn
ðū; v̄Þ

Z Z
S̄ðū;v̄Þ

ĥyn
ð ~u; ~vÞmðd ~u;d~vÞdūdv̄,

with

Âyðu; vÞ ¼

Z Z
S̄ðu;vÞ

ĥyðū; v̄Þĥyðū; v̄Þ
T dūdv̄.

Here ĥy is defined through

L0q̂yðu; vÞ ¼

Z v

0

Z u

0

ĥyðū; v̄Þdūdv̄

and q̂y is defined as qy, but with F X replaced with FXn.

Theorem 4. Under H0 and the conditions in Theorem 1,

ðcLyn
�L0Þb̂n�!dB in the space D½0; 1Þ2.

Theorem 4 reveals that for the operators replacement of y0 by yn has no effect on the limit, in contrast to the
processes bn and b̂n. See also Stute et al. (1998).

Test statistics are based on continuous functionals of ðcLyn
�L0Þb̂n. The following corollary is a

straightforward consequence of Theorem 4 and the continuous mapping theorem,

Corollary 2. Under H0 and the conditions in Theorem 1,

GððcLyn
�L0Þb̂nÞ�!dGðBÞ,

for any functional G on D½0; 1Þ2 being continuous at the sample paths of B.

Remark 1. The results of this section continue to hold in the situation of Theorem 2. For this, replace the
function qy by the function ðqT

y;d; q
1T
y;dÞ

T. Since q1
y;d is an integral, it may be estimated at parametric rates though

it contains the unknown regression function r. In fact, in view of (1.3), q1
y0;d0 ðu; vÞ can be estimated by

q̂1
yn;dn
ðu; vÞ ¼

1

n

Xn

i¼1

1f ~FXnðZ
T
i dnÞpugZi

q
qx

FY jX ;yn
ðF�1Y jX ;yn

ðvjZT
i dnÞjZ

T
i dnÞ,

whose increments are free of nonparametric components. Here, ~FXn is the sample distribution of ZT
i dn, iX1.

The Kolmogorov– Smirnov and Cramér– von Mises statistics pertain to the functionals

Gðf Þ ¼ sup
0pu;vo1

jf ðu; vÞj and Gðf Þ ¼
Z 1

0

Z 1

0

f ðu; vÞ2 du dv,

respectively, resulting in the test statistics

Kn ¼ sup
0pu;vo1

jðL̂yn
�L0Þb̂nðu; vÞj

and

Cn ¼

Z 1

0

Z 1

0

jðcLyn
�L0Þb̂nðu; vÞj

2 dudv,

9



respectively. Under H0 and the conditions in Corollary 1,
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Table 1

Critical values of C1 and K1

C1 K1

a ¼ 0:10 0.53 2.21

a ¼ 0:05 0.72 2.46

a ¼ 0:01 1.18 3.03

M.A. Delgado, W. Stute / Journal of Econometrics 143 (2008) 37–5546
Kn�!dK1 ¼ sup
0pu;vo1

jBðu; vÞj,

Cn�!dC1 ¼

Z 1

0

Z 1

0

Bðu; vÞ2 dudv

in distribution. Table 1 provides some quantiles of K1 and C1. The distribution of suprema for the two
parameter Brownian Motion (K1) has been tabulated by Brownrigg (2005). We have obtained the critical
values of C1 by simulation, using the spectral representation in (3.2).

From the computational viewpoint, it is more convenient to use the asymptotically equivalent versions

K̂n ¼ sup
1pi; jpn

ðcLyn
�L0Þb̂n

i

n
; V̂ nj

� �				 				,
Ĉn ¼

1

n2

Xn

i¼1

Xn

j¼1

ðcLyn
�L0Þb̂n

i

n
; V̂nj

� �				 				2.
The resulting tests are omnibus, but power in particular directions can be improved by using linear
combinations of the principal components of ðL̂yn

�L0Þb̂n, as will be discussed in the next section.
For the sets in (2.2), the transformation of b̂n can be written as

ðcLyn
�L0Þb̂nðu; vÞ ¼ n1=2ðcLyn

�L0ÞĜnðu; vÞ

¼
1

n1=2

Xbnuc

i¼1

½1
fV̂ n½i:n�pvg þ log½1� ðv ^ V̂n½i:n�Þ��

� n1=2

Z v

0

1

n

Xbnuc

i¼1

ĥyn

i

n
; v̄

� �T
 !

Â
�1

yn
ðv̄Þ

Z 1

0

Z 1

v̄

ĥyn
ð ~u; ~vÞL0Ĝnðd ~u; d~vÞdv̄.

It may happen that the function jy in (1.2) and hence hy does not depend on u:

jyðu; vÞ ¼ jyðvÞ; hyðu; vÞ ¼ hyðvÞ.

This may be the case, for example, when j pertains to the maximum likelihood estimator and F is the normal
location-scale family. See Section 4 for details. In such a situation, ĥ ¼ h and the transformation of b̂n becomes
In such a situation, ĥ ¼ h and the transformation of b̂n becomes

ðcLyn
�L0Þb̂nðu; vÞ ¼

1

n1=2

Xbnuc

i¼1

½1
fV̂ n½i:n�pvg þ log½1� ðv ^ V̂n½i:n�Þ��

� n1=2u

Z v

0

hyn
ðv̄ÞÂ

�1

yn
ðv̄Þ

Z 1

v̄

hyn
ð ~vÞL0Ĝnð1;d~vÞdv̄.

10



Here
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ÂyðvÞ ¼

Z 1

v

hyðv̄Þhyðv̄Þ
T dv̄,

while the last double integral may be seen to be equal to

Z v

0

0

hyn
ðv̄Þ

 !T 1� v̄
R 1

v̄
jyn
ð ~vÞT d~vR 1

v̄
jyn
ð~vÞd~v

R 1
v̄
jyn
ð~vÞjyn

ð~vÞT d~v

24 35�1 R 1
v̄

Ĝnð1; d~vÞR 1
v̄
jyn
ð ~vÞĜnð1;d~vÞ

0@ 1Adv̄

¼
1

n

Xn

i¼1

1

jyn
ðV̂ n½i:n�Þ

 !T Z v^V̂n½i:n�

0

1� v̄
R 1

v̄
jyn
ð ~vÞT d~vR 1

v̄
jyn
ð~vÞd~v

R 1
v̄
jyn
ð~vÞjyn

ð~vÞT d~v

24 35�1 0

hyn
ðv̄Þ

 !
dv̄.

In our simulations the integrals were computed using numerical methods. See Section 4.

3. Contiguous alternatives and directional tests

Consider the contiguous alternatives

A3. H1n :
F Y jX ðdyjxÞ

¼ 1þ
tny0 ðy; xÞ

1=2
some y0 2 Y,
FY jX ;y0 ðdyjxÞ n
ull hypothesis, which are properly
de alternatives, consider the example
where tny : R
2! R is such thatZ

R

tnyðy;xÞFY jX ;yðdyjxÞ ¼ 0 and tny! ty as n!1 in L2

for each x 2 R and all y 2 Y.

The restriction on tny allows modeling particular departures from the n
fined conditional distribution functions. In order to illustrate these local
of testing conditional normality under homoskedasticity, i.e.

H0:FY jX ;y0ðyjxÞ ¼ F
y� x

s


 �
,

where FðeÞ ¼
R e
�1

fðēÞdē and fðeÞ ¼ expð�e2=2Þ=
ffiffiffiffiffiffi
2p
p

is the standard normal probability density function.
Here, s2 is the conditional variance under H0, that is, the model is homoskedastic. An interesting local
alternative is

H1n:FY jX ðyjxÞ ¼ F
y� x

snðxÞ

� �
with s2nðxÞ ¼ s2 1þ

gðxÞ
n1=2

� �
for some s40,

for a particular positive function g. This contiguous alternative can be alternatively written as

H1n:
F Y jX ðdyjxÞ

FY jX ;y0 ðdyjxÞ
¼

s
snðxÞ

exp �
ðy� xÞ2

2

1

s2nðxÞ
�

1

s2

� �� �
¼ 1þ

tny0ðy;xÞ

n1=2
,

with

tny0ðy;xÞ ¼ �n1=2 1�
s

snðxÞ
exp �

ðy� xÞ2

2

1

s2nðxÞ
�

1

s2

� �� �� �
.

Therefore,

tny0ðy;xÞ ! ty0 ðy; xÞ ¼ gðxÞ
ðy� xÞ2

2s2
� 1

� �
as n!1.
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To study b̂n under H1n in A3, we may again proceed in steps. To compensate for the deviation from the null
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model, the expansion of Ĝn under H1n now becomes

sup
0pu;vp1

jĜnðu; vÞ � Ḡnðu; vÞ þ qy0 ðu; vÞ
t
ðyn � y0Þ þ n�1=2T1

y0 ðu; vÞj ¼ oPðn
�1=2Þ, (3.1)

where

T1
yðu; vÞ ¼

Z u

0

Z v

0

tyðF
�1
Y jX ;yðv̄jF

�1
X ðūÞÞ;F

�1
X ðūÞÞdv̄dū.

Under contiguous alternatives the expansion A2 of yn still continues to hold, but the ‘y0 -terms typically are not
centered anymore. See Behnen and Neuhaus (1975). This results in the additional shift

T2
yðu; vÞ ¼ qty ðu; vÞ

Z 1

0

Z 1

0

‘̄yðū; v̄ÞtyðF
�1
Y jX ;yðv̄jF

�1
X ðūÞÞ;F

�1
X ðūÞÞdv̄dū.

Put

Tyðu; vÞ ¼ T1
yðu; vÞ � T2

yðu; vÞ.

Then, under H1n, b̂n � Ty0 has the same limit as b̂n under H0. This yields the following result.

Theorem 5. Under H1n and the conditions in Theorem 1,

ðcLyn
�L0Þðb̂n � Ty0 Þ�!dB in the space D½0; 1Þ2.

The associated shift function Ty0 will be in charge of the local power of the test. Through the additional
term T2

y it is possible that, though parameters may be known, their estimation increases the power of the test.

It is well known, see Kuelbs (1968), that B has the Kac–Siegert representation:

Bðu; vÞ ¼
X1
i¼1

X1
j¼1

zijl
1=2
ij Fijðu; vÞ,

where

lij ¼
16

½ð2i � 1Þð2j � 1Þp2�2
; Fijðu; vÞ ¼ 2 sin

ð2i � 1Þpu

2

� �
sin
ð2j � 1Þpv

2

� �
and

zij ¼

Z 1

0

Z 1

0

Bðu; vÞFijðu; vÞ

l1=2ij

dudv; i; j ¼ 1; 2; 3; . . .

are the principal components of B.
The principal components of ðcLyn

�L0Þb̂n are

ẑij ¼

Z 1

0

Z 1

0

ðcLyn
�L0Þb̂nðu; vÞFijðu; vÞ

l1=2ij

dudv.

Hence, applying the continuous mapping theorem, ẑij!dNðtij ; 1Þ under H1n with

tij ¼

Z 1

0

Z 1

0

Ly0 �L0

 �
Ty0 ðu; vÞFijðu; vÞ

l1=2ij

dudv.

Tests can be based on linear combinations of some ẑij , as has been suggested, in the context of goodness-
of-fit testing of marginal distributions, by Durbin et al. (1975). Notice that, under H1n; upon applying

12



Parseval’s Theorem,
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Ĉn ¼
1

n2

Xn

j¼1

Xn

i¼1

ðcLyn
�L0Þb̂n

i

n
; V̂ nj

� �� �2
!d

X1
i¼1

X1
j¼1

ðzij þ tijÞ
2lij . (3.2)

Conclude that the resulting tests will hardly detect high frequency alternatives, since lij will take very small
values when i and j become large. See Eubank and La Riccia (1992) for a discussion. This suggests to use
Neyman-type test statistics. See Neyman (1937). For this fix m1 and m2. Then

Sn;m1;m2
¼
Xm1

i¼1

Xm2

j¼1

ẑ2ij�!dw2m1þm2

Xm1

i¼1

Xm2

j¼1

t2ij

 !
under H1n,

with w2m Lð Þ denoting a noncentral chi-square variate with noncentrality parameter L. These smooth tests are
expected to perform better than those based on the Cramér–von Mises or Kolmogorov–Smirnov criteria in the
direction of high frequency alternatives. It is also relevant to find the optimal linear combination of principal
components such that the resulting test maximizes the power in the direction of particular contiguous
alternatives, along the lines suggested by Schoenfeld (1977, 1980) and Stute (1997). In fact, as it happens with
Neyman-type statistics, Sn;m1;m2

can be interpreted as a Lagrange multiplier test for testing that V and U are
independent and uniformly distributed in ½0; 1� in the direction of an exponential density, along the lines of
Kallenberg and Ledwina (1999) for a related problem.

Now, under H1n,

ðcLyn
�L0Þb̂n�!dM ¼ Bþ ðLy0 �L0ÞTy0 .

M has the spectral representation,

Mðu; vÞ ¼
X1
i¼1

X1
j¼1

rijl
1=2
ij Fijðu; vÞ,

where rij is distributed as Nðtij ; 1Þ. Conclude that we may consider a test of the hypothesis

H̄0 : E½rij � ¼ 0 all i; j ¼ 1; 2; . . . ,

versus

H̄1 : E½rij � ¼ tij some i; j ¼ 1; 2; . . . .

The asymptotic likelihood-ratio test statistic based on rij ; i ¼ 1; . . . ;m1; j ¼ 1; . . . ;m2 is given by

Lm1m2
¼ exp

Xm1

i¼1

Xm2

j¼1

tij rij �
tij

2


 �( )

¼ exp

Z 1

0

Z 1

0

Dm1m2
ðu; vÞ Mðu; vÞ �

ðLy0 �L0ÞTy0 ðu; vÞ

2

� �
dudv

� �
,

with

Dm1m2
ðu; vÞ ¼

Xm1

i¼1

Xm2

j¼1

tijFijðu; vÞ

l1=2ij

.

Grenander (1950) showed that if
P1

i¼1

P1
j¼1 t

2
ijo1, the most powerful test, at the significance level a,

consists of rejecting H̄0 when

L14k with PðL14kÞ ¼ a.

Here

L1 ¼ exp

Z 1

0

Z 1

0

D1ðu; vÞ Mðu; vÞ �
ðLy0 �L0ÞTy0 ðu; vÞ

2

� �
du dv

� �
13



with
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D1ðu; vÞ ¼
X1
i¼1

X1
j¼1

tijFijðu; vÞ

l1=2ij

.

We can use, as a test statistic,

j ¼

P1
i¼1

P1
j¼1 rij � tij

ð
P1

i¼1

P1
j¼1t

2
ijÞ

1=2

¼

R 1
0

R 1
0
D1ðu; vÞMðu; vÞdu dv

ð
P1

i¼1

P1
j¼1 t

2
ijÞ

1=2
.

Then j	Nð0; 1Þ under H̄0. H̄0 is rejected when

jXc1�a,

with c1�a denoting the ð1� aÞth quantile of Nð0; 1Þ.
In practice, we must estimate tij, truncate and rescale the series to come up with an upper one-sided test

based on

ĵn;m1m2
¼

Pm1

i¼1

Pm2

j¼1 t̂ij � ẑij

ð
Pm1

i¼1

Pm2

j¼1 t̂
2
ijÞ

1=2
�!dNð0; 1Þ under H0,

with m1 and m2 fixed integers,

t̂ij ¼

Z 1

0

Z 1

0

ðcLyn
�L0ÞT̂nyn

ðu; vÞFijðu; vÞ

l1=2ij

dudv,

T̂nyðu; vÞ ¼
1

n

Xbnuc

i¼1

tnyðY ½i:n�;X i:nÞ1fV̂n½i:n�pvg � q̂yðu; vÞ
t 1

n

Xn

i¼1

‘yðX i;Y iÞtnyðY i;X iÞ.

Again, replacement of the operator Ly0 by an estimated operator Lyn
does not change the limit. For a given

parametric conditional model and a specified alternative an analysis of the components which guarantee high
power depends on the model. In the following section we discuss how our method applies for testing
conditional normality.

4. Monte Carlo

In this section we apply the Cramér–von Mises test based on Ĉn to test for conditional normality with
homoscedastic disturbances, that is,

FY jX ;yðyjxÞ ¼ F
y� x

s


 �
,

with x ¼ d00 þ d01z, y0 ¼ ðd
t

0 ;s
2Þ
t
2 R2 � Rþ and d0 ¼ ðd00; d01Þ

t, where F is the standard normal
distribution. Conclude that

f Y jX ;yðyjxÞ ¼
1

s
f

y� x

s


 �
with f the standard normal probability density function. Therefore,

q
qy

ln f Y jX ;yðyjxÞ ¼
1

s2

1

2

ðy� xÞ2

s2
� 1

� �
y� x

zðy� xÞ

0BBB@
1CCCA.
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Notice that, for all y 2 R2 � Rþ,
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F�1Y jX ðvjxÞ ¼ xþ s � F�1ðvÞ.

Hence,

q
qy

ln f Y jX ðF
�1
Y jX ðvjxÞjxÞ ¼

1

s2

1
2
ðF�1ðvÞ2 � 1Þ

s � F�1ðvÞ

z � s � F�1ðvÞ

0BB@
1CCA,

which is used for computing qy in (1.2). It is immediate that the function jy in (1.2) and hence hy in (2.1)
does not depend on u. The random variable X is always distributed as Uð0; 1Þ with s ¼ d00 ¼ d01 ¼ 1.
Programs were written in double precision FORTRAN 90 and run using a Intel Pentium 4 processor with the

Table 2
Proportion of rejection under H0 : Y jX	NðZ;s2Þ. Z ¼ d00 þ d01X

No estimated parameters s2 Estimated

n ¼ 15 n ¼ 15

a ¼ 0:10 0.1236 0.1188

a ¼ 0:05 0.0646 0.0680

a ¼ 0:01 0.0206 0.0240

n ¼ 25 n ¼ 25

a ¼ 0:10 0.1080 0.1052

a ¼ 0:05 0.0578 0.0582

a ¼ 0:01 0.0146 0.0142

n ¼ 50 n ¼ 50

a ¼ 0:10 0.1030 0.1038

a ¼ 0:05 0.0522 0.0548

a ¼ 0:01 0.0126 0.0132

n ¼ 100 n ¼ 100

a ¼ 0:10 0.0976 0.1010

a ¼ 0:05 0.0506 0.0508

a ¼ 0:01 0.0094 0.0100

Table 3

Proportion of rejection under fixed alternative H1:Y jX	NðZ; 12 � ðX � 0:5Þ2Þ

No estimated parameters s2 Estimated

n ¼ 50 n ¼ 50

a ¼ 0:10 0.0950 0.1650

a ¼ 0:05 0.0370 0.0814

a ¼ 0:01 0.0064 0.0208

n ¼ 100 n ¼ 100

a ¼ 0:10 0.2038 0.3282

a ¼ 0:05 0.0724 0.1834

a ¼ 0:01 0.0080 0.0496

n ¼ 200 n ¼ 200

a ¼ 0:10 0.6426 0.6962

a ¼ 0:05 0.2982 0.4722

a ¼ 0:01 0.0246 0.1620
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Microsoft Developer Studio Compiler, and the IMSL library was used for generating the random numbers
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(routines DRNUN and DRNNOR), for computing the inverse of the standard normal distribution (routine
DNORDF), for numerical integration taking into account possible singularities at the end points (routine
DQDAGS). Monte Carlo experiments are based on 5000 simulations.

We have considered sample sizes of n ¼ 15, 25, 50 and 100. We report on the percentages of rejection for the
cases where (a) y0 is completely known and (b) d0 is known but s2 unknown (and estimated).

The proportion of rejections under H0 is reported on in Table 2. The attained level is very good, even for
small sample sizes like n ¼ 25.

Table 3 reports on the proportion of rejections under the alternative hypothesis

H1 : F Y jX ;yðyjxÞ ¼ F
y� x

sðxÞ

� �
with s2ðxÞ ¼ 12 ðz� 0:5Þ2.

Note that s2 ¼ EðVarðY jX ÞÞ ¼ Eðs2ðX ÞÞ ¼ 1, as under H0.
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Appendix A

In the following lemma we analyze the local behavior of the sequential empirical process associated with the
concomitants of the V i’s. For this, define for 0pu; vp1 and real k1;k2; . . . ;kn,

b0nðu; v; k1; . . . ; knÞ ¼
1ffiffiffi
n
p

Xbnuc

i¼1

½1fV ½i:n�pvþkin�1=2g
� 1fV ½i:n�pvg � kin

�1=2�.

We shall see that b0n converges to zero uniformly in u; vð Þ and k1; . . . ;kn, as long as the ki range in a compact
interval.

Lemma 1. For each finite K , as n!1,

sup
0pu;vp1

fjki jpK ;i¼1;...;ng

jb0nðu; v; k1; . . . ; knÞj ¼ oPð1Þ.

Proof. The proof follows standard arguments when dealing with residual empirical processes, see e.g., Koul
(2002) monograph. For fixed u; v and ki; i ¼ 1; . . . ; n, the assertion is trivial. Just observe that the concomitants
are independent and identically distributed as a Uð0; 1Þ random variable. Obviously b0n converges to zero in
squared mean and hence in probability. For a given sequence k1; k2; . . ., b

0
n is also tight in ðu; vÞ; since it is only

a variation of a time-sequential empirical process, which is well known to be tight. In order to get uniformity
in k, use monotonicity of the indicators, decompose the interval ½�K ;K � into small subintervals and reduce the
analysis, up to a small error, to a finite grid. Since this is standard, details are omitted. &

Proof of Theorem 1. Since

V̂ni ¼ FY jX ;yn
ðF�1Y jX ðVijX iÞjX iÞ,

we have, by continuity,

1
fV̂nipvg ¼ 1fV ipFY jX ðF

�1
Y jX ;yn

ðvjX iÞjX iÞg
.

Applying a mean value theorem argument, for 1 
 i 
 n,

FY jX ðF
�1
Y jX ;yn

ðvjX iÞjX iÞ

¼ vþ ðy0 � ynÞ
t q
qy

FY jX ;yðF
�1
Y jX ;yn

ðvjX iÞjX iÞ

				
y¼y�ni

, ðA:1Þ
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i ¼ 1; 2; . . . ; where ky�ni � y0kpkyn � y0k. Since qFY jX ;yðF
�1
Y jX ;y ðvjX iÞjX iÞ=qy is bounded in a neighborhood of

ARTICLE IN PRESS
M.A. Delgado, W. Stute / Journal of Econometrics 143 (2008) 37–55 53
n

y0, and since yn ¼ y0 þOPðn
�1=2Þ, (A.1) implies that

FY jX ðF
�1
Y jX ;yn

ðvjX iÞjX iÞ ¼ vþ kin
�1=2; i ¼ 1; 2; . . . ,

where with large probability ki ranges in a possibly large but compact set. Hence, from Lemma 1, we obtain
uniformly in ðu; vÞ 2 ½0; 1�2 that, up to a remainder oPð1Þ,

b̂nðu; vÞ ¼ bnðu; vÞ � n1=2ðyn � y0Þ
t 1

n

Xbnuc

i¼1

q
qy

FY jX ;yðF
�1
Y jX ;yn

ðvjX i:nÞjX i:nÞ

				
y¼y�ni

.

The result now follows from the assumed continuity of

qFY jX ;yðF
�1
Y jX ;yn

ðvjX iÞjX iÞ=qy,

the consistency of yn, and the uniform convergence of the involved empirical integrals. &

Proof of Theorem 2. Compared with the previous proof, we now have

V̂ni ¼ FY jX ;yn
ðY ij ~X niÞ,

with ~X ni ¼ Zt

i dn and Y i ¼ F�1Y jX ;y0ðV ijZ
t

i d0Þ. Hence

1
fV̂nipvg ¼ 1fVipFY jX ;y0 ðF

�1
Y jX ;yn

ðvj ~X niÞjX iÞg
.

But

FY jX ;y0ðF
�1
Y jX ;yn

ðvj ~X niÞjX iÞ

¼ vþ ðy0 � ynÞ
t q
qy

FY jX ;yðF
�1
Y jX ;yn

ðvj ~X niÞjZ
t

i d0Þy¼y�ni

þ ðd0 � dnÞ
tZi

q
qx

F Y jX ;yn
ðF Y jX ;yn

ðvj ~X niÞjxÞx¼x�
ni
,

where x�ni is between Zt

i dn and Zt

i d0. If we sum these terms up for the first bnuc ordered X i ¼ Zt

i d0, note that
in probability and uniformly in 0pu; vp1:

1

n

Xbnuc

i¼1

q
qy

FY jX ;yðF
�1
Y jX ;yn

ðvj ~X ½i:n�ÞjX i:nÞy¼yn
! qy0;d0 ðu; vÞ,

1

n

Xn

i¼1

1f ~FXnð ~X niÞpugZi

q
qx

F Y jX ;yn
ðF�1Y jX ;yn

ðvj ~X niÞjx
�
niÞ ! q1

y0;d0ðu; vÞ,

where ~F Xn is the sample distribution of ~X ni, iX1. Actually, this follows from the continuity of the involved
functions, upon noticing that because of the n1=2-consistency of dn and the fact that Z has finite second
moments we have

max
1pipn

Zt

i ðdn � d0Þ ¼ oPð1Þ: &

Proof of Theorem 3. It follows from Corollary 1 that b̂n is tight. It is then not difficult to show that also
ðLy0 �L0Þb̂n is tight. Since also the finite dimensional distributions converge, it suffices to show that in
distribution ðLy0 �L0Þb̂1 equals a Brownian sheet. First, the operator Ly0 �L0 is linear so that the limit is a
centered Gaussian process. Check the covariance structure to get the assertion of the theorem. See also
Khmaladze (1988, 1993) or Lemma 3.1 in Stute et al. (1998) for related arguments. &

Proof of Theorem 4. To prove Theorem 4 it suffices to show that

ðL̂yn
�L0Þb̂n � ðLy0 �L0Þb̂n ! 0 in probability.

This may be proved along the lines of Stute et al. (1998), where similar things have been done in the context of
model checks in regression. &
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Proof of Theorem 5. We already pointed out that Theorem 5 is a consequence of the expansion (3.1) and the
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central limit theorem under contiguous alternatives due to Behnen and Neuhaus (1975). To show (3.1), recall

FY jX ðdyjxÞ ¼ ð1þ n�1=2tny0 ðy;xÞÞF Y jX ;y0 ðdyjxÞ.

Hence, compared to the proof of Theorem 1, we have to add another term, namely

n�1=2
Z F�1

Y jX ;yn
ðvjX iÞ

�1

tny0ðy;X iÞFY jX ;y0 ðdyjX iÞ,

to the right-hand side of (A.1). Summation over the first bnuc X -order statistics and using a continuity
argument as well as assumption A3 yield the representation (3.1) and hence the assertion of Theorem 5. &
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