151 research outputs found

    Develop a safer ground piercing method/process for fiber to the home installation

    Get PDF
    Cable strike is one of the safety challenges that construction industry’s utilities sector is facing. Such incidents can cause injury and death for operators, as well as costly repairs and compensations. Fiber4all, a Dutch company which is responsible for Fiber-to-the-Home (FttH) connection is suffering from the same problem. Despite specialized equipment, work preparation and process organization cable strikes still occur. Even though the number of such incidents in comparison to the total number of the connections is very low, stakeholders want to avoid such incidents as much as possible. An exploratory study was carried out based on the incidents’ reports from January 2013 till March 2015. Our findings in this study indicate that the majority of cable strikes are associated with human errors and incorrect information in FttH installation. Apart from exploratory study, an investigation was accomplished through six interviews with operators within the FttH work environments. From operators' perspective and their experiences of incident occurrence a taxonomy of the causal factors of cable strikes was constructed. This study suggests to investigate and invest more attention into the human aspect of the system despite the initial understanding, which was more focusing on technology improvements

    Integrating Information Literacy and Research Strategies into a Sophomore Chemistry Course: A New Collaboration

    Get PDF
    Librarians at the State University of New York College of Environmental Science and Forestry (SUNY ESF) teach a one-credit information literacy course which is required for several majors. For many years, a section of this course was integrated into a senior level professional chemistry course. Students in this course work with chemistry faculty to develop a research proposal, and spend five weeks with the chemistry liaison librarian learning library and information research skills related to their topics. Recognizing that students need to begin learning research and career skills sooner than their senior year, chemistry faculty approached the library to work with them in integrating information literacy skills into a new sophomore level course. During this new course’s pilot semester, the chemistry liaison librarian was invited to teach two class sessions and to develop an assignment for students to help them write a paper on a chemistry topic. This chapter discusses specific outcomes, topics covered, assignments, observations, and future directions of the information literacy instruction in this new sophomore level course

    Microbial Resistance Mechanisms to the Antibiotic and Phytotoxin Fusaric Acid

    Get PDF
    Fusaric acid (FA) produced by Fusarium oxysporum plays an important role in disease development in plants, including cotton. This non-specific toxin also has antibiotic effects on microorganisms. Thus, one expects a potential pool of diverse detoxification mechanisms of FA in nature. Bacteria and fungi from soils infested with Fusarium and from laboratory sources were evaluated for their ability to grow in the presence of FA and to alter the structure of FA into less toxic compounds.None of the bacterial strains were able to chemically modify FA. Highly FA resistant strains were found only in Gram-negative bacteria, mainly in the genus of Pseudomonas. The FA resistance of the Gram-negative bacteria was positively correlated with the number of predicted genes for FA efflux pumps present in the genome. Phylogenetic analysis of predicted FA resistance proteins (FUSC, an inner membrane transporter component of the efflux pump) revealed that FUSC proteins having high sequence identities with the functionally characterized FA resistance protein FusC or Fdt might be the major contributors of FA resistance. In contrast, most fungi converted FA to less toxic compounds regardless of the level of FA resistance they exhibited. Five derivatives were detected, and the detoxification of FA involved either oxidative reactions on the butyl side chain or reductive reactions on the carboxylic acid group. The production of these metabolites from widely different phyla indicates that resistance to FA by altering its structure is highly conserved. A few FA resistant saprophytic or biocontrol strains of fungi were incapable of altering FA, indicating a possible involvement of efflux transporters. Deployment of both efflux and derivatization mechanisms may be a common feature of fungal FA resistance

    Risk Assessment Of Climate Change Impacts On Railway Infrastructure

    Get PDF
    Although it has been known for a while that climate-related factors account for the performance development of infrastructure, it remains difficult for infrastructure manager to estimate the effect of the anticipated climate change. The impact of climate factors differs very much between geographical locations and therefore a climate change assessment requires a more detailed analysis of the particular network. In this paper data about actual infrastructure performance of two railway tracks in the mostly populated area of the Netherlands are correlated with regional climate data in order to model future performance and apply appropriate interventions to cope with climate change effects. After establishing the correlation between weather conditions and failure modes, threshold values for probabilities of occurrence of certain failures are determined. This is enabling then the development of risk matrix based on the likelihood and risk impact, which would support an effective maintenance plan and adaptation strategies in the long term sense to mitigate or reduce likelihood of failures caused by climate change

    Increased Terpenoid Accumulation in Cotton (Gossypium hirsutum) Foliage is a General Wound Response

    Get PDF
    The subepidermal pigment glands of cotton accumulate a variety of terpenoid products, including monoterpenes, sesquiterpenes, and terpenoid aldehydes that can act as feeding deterrents against a number of insect herbivore species. We compared the effect of herbivory by Spodoptera littoralis caterpillars, mechanical damage by a fabric pattern wheel, and the application of jasmonic acid on levels of the major representatives of the three structural classes of terpenoids in the leaf foliage of 4-week-old Gossypium hirsutum plants. Terpenoid levels increased successively from control to mechanical damage, herbivory, and jasmonic acid treatments, with E-β-ocimene and heliocide H1 and H4 showing the highest increases, up to 15-fold. Herbivory or mechanical damage to older leaves led to terpenoid increases in younger leaves. Leaf-by-leaf analysis of terpenes and gland density revealed that higher levels of terpenoids were achieved by two mechanisms: (1) increased filling of existing glands with terpenoids and (2) the production of additional glands, which were found to be dependent on damage intensity. As the relative response of individual terpenoids did not differ substantially among herbivore, mechanical damage, and jasmonic acid treatments, the induction of terpenoids in cotton foliage appears to represent a non-specific wound response mediated by jasmonic acid

    Transcriptional responses underlying the hormetic and detrimental effects of the plant secondary metabolite gossypol on the generalist herbivore Helicoverpa armigera

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hormesis is a biphasic biological response characterized by the stimulatory effect at relatively low amounts of chemical compounds which are otherwise detrimental at higher concentrations. A hormetic response in larval growth rates has been observed in cotton-feeding insects in response to increasing concentrations of gossypol, a toxic metabolite found in the pigment glands of some plants in the family Malvaceae. We investigated the developmental effect of gossypol in the cotton bollworm, <it>Helicoverpa armigera</it>, an important heliothine pest species, by exposing larvae to different doses of this metabolite in their diet. In addition, we sought to determine the underlying transcriptional responses to different gossypol doses.</p> <p>Results</p> <p>Larval weight gain, pupal weight and larval development time were measured in feeding experiments and a hormetic response was seen for the first two characters. On the basis of net larval weight gain responses to gossypol, three concentrations (0%, 0.016% and 0.16%) were selected for transcript profiling in the gut and the rest of the body in a two-color double reference design microarray experiment. Hormesis could be observed at the transcript level, since at the low gossypol dose, genes involved in energy acquisition such as β-fructofuranosidases were up-regulated in the gut, and genes involved in cell adhesion were down-regulated in the body. Genes with products predicted to be integral to the membrane or associated with the proteasome core complex were significantly affected by the detrimental dose treatment in the body. Oxidoreductase activity-related genes were observed to be significantly altered in both tissues at the highest gossypol dose.</p> <p>Conclusions</p> <p>This study represents the first transcriptional profiling approach investigating the effects of different concentrations of gossypol in a lepidopteran species. <it>H. armigera</it>'s transcriptional response to gossypol feeding is tissue- and dose-dependent and involves diverse detoxifying mechanisms not only to alleviate direct effects of gossypol but also indirect damage such as pH disturbance and oxygen radical formation. Genes discovered through this transcriptional approach may be additional candidates for understanding gossypol detoxification and coping with gossypol-induced stress. In a generalist herbivore that has evolved transcriptionally-regulated responses to a variety of different plant compounds, hormesis may be due to a lower induction threshold of growth-promoting, stress-coping responses and a higher induction threshold of detoxification pathways that are costly and cause collateral damage to the cell.</p

    Multi-agent Poli-RRT* Optimal constrained RRT-based planning for multiple vehicles with feedback linearisable dynamics

    Get PDF
    Planning a trajectory that is optimal according to some performance criterion, collision-free, and feasible with respect to dynamic and actuation constraints is a key functionality of an autonomous vehicle. Poli-RRT* is a sample-based planning algorithm that serves this purpose for a single vehicle with feedback linearisable dynamics. This paper extends Poli-RRT* to a multi-agent cooperative setting where multiple vehicles share the same environment and need to avoid each other besides some static obstacles
    corecore