
Multi-Agent Poli-RRT*
Optimal constrained RRT-based Planning for

Multiple Vehicles with Feedback Linearisable Dynamics

Matteo Ragaglia, Maria Prandini, and Luca Bascetta

Politecnico di Milano - Piazza Leonardo da Vinci, 32 - 20133, Milan, Italy
{matteo.ragaglia, maria.prandini, luca.bascetta}@polimi.it

Abstract. Planning a trajectory that is optimal according to some performance
criterion, collision-free, and feasible with respect to dynamic and actuation con-
straints is a key functionality of an autonomous vehicle. Poli-RRT* is a sample-
based planning algorithm that serves this purpose for a single vehicle with feed-
back linearisable dynamics. This paper extends Poli-RRT* to a multi-agent co-
operative setting where multiple vehicles share the same environment and need
to avoid each other besides some static obstacles.

Keywords: Planning, Optimal Control, Feasability, Safety, Autonomous vehi-
cles, Multi-Agent Systems

1 Introduction
In the past few years the interest towards autonomous unmanned vehicles is con-
siderably increased, mainly because they allow to perform critical tasks without
endangering the life of human pilots/drivers. Their applications range from sci-
entific exploration to provision of commercial services, from search and rescue
to military operations.
Among the functionalities that make a vehicle autonomous, planning plays a cru-
cial role. As a matter of fact, the planner not only has the responsibility to de-
liver a trajectory that takes the vehicle to the desired goal but it also needs to
guarantee both “feasibility” (with respect to possibly nonlinear dynamics, kino-
dynamic and actuation constraints) and “safety” (in terms of avoiding obstacles
and dangerous kinematic configurations, i.e., vehicle roll-over) of the computed
trajectory. Moreover, in most practical applications, it is typically required to find
trajectories that are optimal according to some cost metric.
Unfortunately, given a complex system characterized by nonlinear dynamics,
moving from a standard planning problem to an optimal planning problem, or
even to a constrained and optimal one, computational intractability comes at no
surprise. As a consequence, sample-based planning algorithms have emerged as
an appealing alternative to search-based planning techniques [1, 2] and model
predictive control approaches [3].

1.1 State of the art
The success that sample-based planners like Rapidly-exploring Random Trees
(RRT) [4] have achieved in the last fifteen years is due to a rather simple yet ef-
fective idea: a set of points is sampled from the free-space and connected in order

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/80335191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Matteo Ragaglia, Maria Prandini, and Luca Bascetta

to build a tree (roadmap) of feasible trajectories, that are then used to determine
the solution to the planning problem. Interestingly, probabilistic completeness
has been shown for this approach in [5].
RRT-based planning algorithms [4] have been originally introduced to solve the
trajectory planning problem for holonomic robots. Then, they have been extended
to optimal and constrained trajectory planning. Several solutions have been pro-
posed in the latest few years, including optimal/non-linear RRTs [6, 7], Rapidly-
exploring Random Graphs (RRG) and RRT* [8–13]. A generalization of the
RRT* planning approach to arbitrary kino-dynamic systems is presented in [14],
where the shooting method [15] is used to connect pairs of nodes, thus obtaining
feasible yet inherently suboptimal trajectories.
In [16] the authors present an algorithm, named “Kinodynamic RRT*”, that guar-
antees asymptotic optimality for systems characterised by linear differential con-
straints. The same approach can be applied to non-linear dynamics as well, by
using their first-order Taylor approximations. Furthermore, in [17] the “LQR-
RRT*” algorithm is proposed to solve planning problems with complex or under-
actuated dynamics, by locally linearising the system and applying linear quadratic
regulation (LQR), while in [18] a new method for applying RRT* to kino-dynamic
motion planning problems is introduced, using a finite-horizon quadratic criterion
to assess the cost and extend the tree.
Finally, [19] introduces the “Poli-RRT*” algorithm, which is the first RRT-based
planner that takes into account vehicle constraints without either representing the
vehicle dynamics with an approximate linearised model or using the shooting
method. In fact, the proposed methodology relies on an exact linearisation of the
model, that allows to efficiently recast the optimal control problem used to extend
the tree into a quadratic program, without any model simplification.
The main contribution of this work to the field of planning for autonomous vehi-
cles consists in extending Poli-RRT* to a multi-agent framework.

1.2 Paper structure

The remainder of this paper is organized as follows. Section 2 briefly describes
the original Poli-RRT* algorithm, while the extension to multi-agent systems is
detailed in Section 3. Section 4 presents simulation results. Finally, some con-
cluding remarks are drawn in Section 5.

2 Background on Poli-RRT* for a single agent

The Poli-RRT* algorithm computes a solution to the optimal constrained plan-
ning problem for a vehicle with feedback linearisable dynamics

ẋ = f (x,u)

subject to constraints on the actuation input u ∈Ω, while accounting also for
collision avoidance in presence of static obstacles.
Given the initial state xstart and the set of goal states Xgoal within the obstacle-free
set X f ree, Poli-RRT* builds a tree T = (XT ,ET), where XT ⊂X f ree are the nodes,

Multi-Agent Poli-RRT* 3

and ET are the edges that correspond to collision-free trajectories connecting two
nodes in XT . Among all sequences of m nodes x0,x1,x2, . . . ,xm, satisfying

xi ∈ XT , i = 0,1, . . . ,m,

x0 = xstart

xm ∈ Xgoal

ei = (xi,xi+1) ∈ ET , i = 0,2, . . . ,m−1

Poli-RRT* chooses the one with minimal overall cost:

C(→ xm) =
m−1

∑
i=0

C(ei) (1)

with the cost per edge satisfying C(e)≥ 0 for any edge e.

2.1 Edge calculation procedure

Given two nodes x and x′, the edge e=(x,x′) represents the optimal trajectory that
connects x to x′ while minimising the cost function C(e) and satisfying actuation
constraints. The edge calculation procedure relies on a two-step approach that
combines optimal control and a receding horizon strategy.
By applying feedback linearisation we can express the original system together
with the input constraints in the new state coordinates s and in the new input v as
follows:

ṡ = As+Bv

h(g(s) ,v) ∈Ω

where

x = g(s)

u = h(x,v)

According to the approach proposed in [16], it is possible to compute a minimum-
time optimal trajectory connecting two states si and si+1 with respect to the cost
metric

Jτ(v) =
∫

τ

0

(
1+ v(t)T Rv(t)

)
dt

R > 0 being an input weight matrix, subject to

s(0) = si

s(τ) = si+1

More in details, for each given final time τ > 0, the optimal control input v and
the corresponding cost J?τ is computed analytically and the minimum time τ? is
determined as

τ
? = argmin

τ>0
J?τ

4 Matteo Ragaglia, Maria Prandini, and Luca Bascetta

Given τ?, the minimum-time optimal input and state variables v?(t) and s?(t),
t ∈ [0,τ?], are given by:

v?(t) = R−1BT exp
(

AT (τ?− t)
)

d?

s?(t) = [In 0n]exp
([

A BR−1BT

0n −AT

]
(t− τ

?)

)[
si+1
d?

]
where n is the dimension of the state s, In is the n× n identity matrix, 0n is the
n×n zero matrix and we set

d? = G(τ?)−1
(

si+1− eAτ?si

)
with G(τ) equal to the weighted controllability Gramian of the system.
Let

x? (t) = g(s? (t)) , t ∈ [0,τ?]

u? (t) = h(x? (t) ,v? (t)) , t ∈ [0,τ?]

be the optimal trajectory in the original state and input variables. If the input
constraints are satisfied by u?(t), for all t ∈ [0,τ?], then, the edge e is set equal to

e = (x?(0),x?(τ?))

with the understanding that the corresponding trajectory is given by u?(t) and
x?(t), with an associated cost

C(ei) = Jτ?(u?)

If that is not the case, a receding horizon strategy is put in place so as to en-
force the constraints, while keeping the resulting trajectory close to the optimal
unconstrained one (see [19] for the details).

2.2 Poli-RRT* algorithm

The steps of the Poli-RRT* algorithm are given by:
1. tree initialisation: an empty tree is initialised, setting

XT = {xstart}
ET = /0

2. random sampling: a state configuration xrand is randomly sampled within
X f ree according to a uniform distribution;

3. neighbour radius computation: set

r = argmax
x∈Xreach

(max{C(e1),C(e2)})

where e1 = (xrand ,x), e2 = (x,xrand) and

Xreach = {x ∈ XT | ||xrand − x||2 ≤ γball}

γball being computed according to [10];

Multi-Agent Poli-RRT* 5

4. minimum-cost trajectory selection: in order to connect xrand to the tree, a
minimum-cost trajectory is determined as emin = (xmin,xrand) where

xmin = argmin
x∈{x∈XT |C(e)≤r ∧CFree(e)}

(C(→ x)+C(e))

where r is the neighbour radius, CFree(e) is a function that returns true when
e is a collision-free trajectory, false otherwise, and C(→ x) represents the
cost of the current-best trajectory going from xstart to x. Then

XT = XT ∪{xrand}
ET = ET ∪{emin}

5. tree rewiring: whenever a node xrand is added to the tree, in order to ensure
trajectory optimality, it is necessary to check the existence of minimum-cost
trajectories starting from xstart , passing through xrand and reaching any other
node within the neighbour radius r of xrand . In other words, for every node
x ∈ XT , if e = (xrand ,x) satisfies

CFree(e) = true, C(e)≤ r, C(→ xrand)+C(e)<C(→ x)

the tree is rewired by setting

ET =
{

ET \{eprev}
}
∪{e}

where eprev is the edge that was previously connecting x to the tree and that
is replaced by e;

6. termination: the algorithm iterates steps 2), 3), 4) and 5) until |XT | = N,
where N is a given maximum cardinality for XT ;

7. optimal trajectory: if the goal area has been reached, the minimum cost-
to-go node inside Xgoal is selected and the trajectory connecting xstart with
xgoal is returned along with the entire tree T :

Xgoal ∩XT 6= /0 =⇒ xgoal = argmin
x∈(Xgoal∩XT)

C(→ x).

3 Extension to multi-agent systems

The main contribution of this work is the extension of the Poli-RRT* algorithm
to a multi-agent setting, by adopting a priority-based approach.
All the K agents are ranked according to a priority criterion and the algorithm
plans trajectories in sequence, starting from the highest-priority agent A1 and
moving to the lowest-priority one AK , each time considering the trajectories that
have already been designed as obstacles to avoid.
A pseudo-code version of the procedure is given in Algorithm 1, whose parame-
ters are:

– N, the maximum tree cardinality;
– AgentsSet, the set of agents;
– ObstaclesSet, the set of obstacles (that initially contains only the static ones);
– sa f eDist, the minimum safe distance that the algorithm must always ensure

between each couple of agents.

6 Matteo Ragaglia, Maria Prandini, and Luca Bascetta

Clearly, once the i-th iteration of the algorithm is completed, the list of obstacles
must be updated in order to keep track of the newly designed trajectory Tra ji
for agent i. At each iteration of the multi-agent algorithm, Poli-RRT* is run for
a specific agent Ai using an updated list of obstacles that account for previously
designed trajectories. Within Poli-RRT* every time a new edge is instantiated, its
initial and final time instants t0 and t f are set, and the edge is checked against the
already planned trajectories within the time window [t0, t f]. If the edge is able to
ensure that the distance from the agents whose trajectories have been already set
is greater than the minimum safe distance, the edge is collision-free and is added
to the tree, otherwise it is discarded.

Algorithm 1 Multi-agent Poli-RRT*
1: ObstaclesSet←{O1,O2, . . . ,OM}
2: AgentsSet←{A1,A2, . . . ,AK}
3: procedure MULTIAGENTPOLIRRT*(N,AgentsSet,ObstaclesSet,sa f eDist)
4: Tra jList← /0

5: for i = 1 to K do
6: Tra ji← PoliRRT ∗ (Ai,ObstaclesSet,sa f eDist)
7: Tra jList← Tra jList ∪Tra ji
8: ObstaclesSet← ObstaclesSet ∪Tra ji
9: end for

10: return Tra jList
11: end procedure

4 Simulation Results

In this section an example is shown where the multi-agent version of Poli-RRT*
is applied to a three-agent system.
The three agents must reach their respective targets while moving in the same en-
vironment. The following unicycle model is adopted for each vehicle dynamics:

ẋ = vcos(θ)

ẏ = vsin(θ)

θ̇ = ω

v̇ = a

(2)

where (x,y) is the vehicle position, θ is the orientation and v the velocity. The
control inputs are the angolar velocity ω and the linear acceleration a.
By applying to (2) the feedback linearisation strategy [20]

[
a
ω

]
=

 cos(θ) sin(θ)

−
sin(θ)

v
cos(θ)

v

[u1
u2

]
,

Multi-Agent Poli-RRT* 7

(a)

(b)

Fig. 1. A multi-agent Poli-RRT* run. 1(a) trajectories for agent 1 (blue), 2 (red), and 3 (green),
circular and square markers represent starting and goal positions, respectively. 1(b): pairwise
agent distance (1-2 blue, 2-3 red, 1-3 green) and minimum safety distance (black dashed).

we obtain the following double integrator linear model

ẋ = vx

ẏ = vy

v̇x = u1

v̇y = u2

8 Matteo Ragaglia, Maria Prandini, and Luca Bascetta

where we set vx = vcos(θ) and vy = vsin(θ).
The start and goal configurations are listed in the following:

– Agent 1:

x1
start = { x = 0, y = 0, θ = π/3, v = 0 }

X1
goal = { x ∈ [92,97] , y ∈ [92,97] , θ ∈ [2π/5,3π/5] , v ∈ [0,0.1] }

– Agent 2:

x2
start = { x = 0, y = 100, θ =−π/9, v = 0 }

X2
goal = { x ∈ [48,52] , y ∈ [3,8] , θ ∈ [−3π/5,−2π/5] , v ∈ [0,0.1] }

– Agent 3:

x3
start = { x = 100, y = 0, θ = 5π/6, v = 0 }

X3
goal = { x ∈ [8,13] , y ∈ [87,92] , θ ∈ [4π/5,6π/5] , v ∈ [0,0.1] }

where linear positions are expressed in m, angles in rad, and linear velocities in
m/s.
State variables are subject to the following bounds

x ∈ [0,100] y ∈ [0,100] θ ∈ [−π,+π] v ∈ [0,1]

whereas actuation constraints on linear acceleration and angular velocity are given
by

a ∈ A = [−0.50,+0.50] ω ∈Ω = [−0.50,+0.50]

The control variables are weighted in the optimal control problem by matrix R =
10 I2.
Figure 1(a) shows the simulation results obtained when the maximum tree cardi-
nality is set equal to 200. Note that the algorithm is able to plan the required tra-
jectories. Moreover, the minimum safety distance between each couple of agents
is guaranteed (Figure 1(b)).

5 Conclusions

This paper extends the Poli-RRT* algorithm to the case of multi-agent systems.
Agents are sorted according to a given hierarchy and the Poli-RRT* algorithm is
executed for each agent following the priority order. The algorithm is validated
in a simulated environment. The resulting solution is sub-optimal from the per-
spective of the multi-agent system, as it depends on the agents ordering. In turn,
single agent trajectory planning can be exploited to make the problem tractable.

References

1. Pivtoraiko, M., Knepper, R., Kelly, A.: Differentially constrained mobile
robot motion planning in state lattices. Journal of Field Robotics 26 (2009)
308–333

Multi-Agent Poli-RRT* 9

2. Likhachev, M., Ferguson, D.: Planning long dynamically feasible maneuvers
for autonomous vehicles. The International Journal of Robotic Research 28
(2009) 933–945

3. Tahirovic, A., Magnani, G.: General framework for mobile robot navigation
using passivity-based MPC. IEEE Transactions on Automatic Control 56
(2011) 184–190

4. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. The Inter-
national Journal of Robotics Research 20 (2001) 378–400

5. Barraquand, J., Kavraki, L., Latombe, J., Motwani, R., Li, T., Raghavan, P.:
A random sampling scheme for path planning. The International Journal of
Robotics Research 16 (1997) 759–774

6. Branicky, M., Curtiss, M., Levine, J., Morgan, S.: RRTs for nonlinear, dis-
crete, and hybrid planning and control. In: IEEE Conference on Decision
and Control (CDC). Volume 1. (2003) 657–663

7. Branicky, M., Curtiss, M., Levine, J., Morgan, S.: Sampling-based planning,
control and verification of hybrid systems. IEEE Proceedings Control Theory
and Applications 153 (2006) 575–590

8. Karaman, S., Frazzoli, E.: Optimal kinodynamic motion planning using in-
cremental sampling-based methods. In: IEEE Conference on Decision and
Control (CDC), Atlanta, GA (2010)

9. Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for opti-
mal motion planning. In: Robotics: Science and Systems (RSS), Zaragoza,
Spain (2010)

10. Karaman, S., Walter, M., Perez, A., Frazzoli, E., Teller, S.: Real-time motion
planning using the RRT*. In: IEEE International Conference on Robotics
and Automation (ICRA). (2011)

11. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research 30 (2011) 846–
894

12. Karaman, S., Frazzoli, E.: Sampling-based optimal motion planning with
deterministic µ-calculus specifications. In: American Control Conference
(ACC). (2012)

13. Perez, A., Karaman, S., Walter, M., Shkolnik, A., Frazzoli, E., Teller, S.:
Asymptotically-optimal path planning for manipulation using incremental
sampling-based algorithms. In: IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). (2011)

14. hwan Jeon, J., Karaman, S., Frazzoli, E.: Anytime computation of time-
optimal off-road vehicle maneuvers using the RRT*. In: IEEE Conference
on Decision and Control and European Control Conference (CDC - ECC).
(2011) 3276–3282

15. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes:
The Art of Scientific Computing. Cambridge University Press (2007)

16. Webb, D., van den Berg, J.: Kinodynamic RRT*: Asymptotically optimal
motion planning for robots with linear dynamics. In: IEEE Intenrational
Conference on Robotics and Automation (ICRA). (2013) 5054–5061

17. Perez, A., Platt, R., Konidaris, G., Kaelbling, L., Lozano-Perez, T.: LQR-
RRT*: Optimal sampling-based motion planning with automatically derived
extension heuristics. In: IEEE International Conference on Robotics and
Automation (ICRA). (2012) 2537–2542

10 Matteo Ragaglia, Maria Prandini, and Luca Bascetta

18. Goretkin, G., Perez, A., Platt, R., Konidaris, G.: Optimal sampling-based
planning for linear-quadratic kinodynamic systems. In: IEEE Intenrational
Conference on Robotics and Automation (ICRA). (2013)

19. Ragaglia, M., Prandini, M., Bascetta, L.: Poli-RRT*: optimal RRT-based
planning for constrained and feedback linearisable vehicle dynamics. In:
European Control Conference (ECC). (2015)

20. Stipanovic, D., Inalhan, G., Teo, R., Tomlin, C.: Decentralized overlapping
control of a formation of unmanned aerial vehicles. Automatica 40 (2004)
1285–1296

