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Abstract Fusaric acid (FA) produced by Fusarium oxysporum
plays an important role in disease development in plants, includ-
ing cotton. This non-specific toxin also has antibiotic effects on
microorganisms. Thus, one expects a potential pool of diverse
detoxification mechanisms of FA in nature. Bacteria and fungi
from soils infested with Fusarium and from laboratory sources
were evaluated for their ability to grow in the presence of FA and
to alter the structure of FA into less toxic compounds. None of the
bacterial strains were able to chemically modify FA. Highly FA-
resistant strains were found only in Gram-negative bacteria,
mainly in the genus of Pseudomonas. The FA resistance of the
Gram-negative bacteria was positively correlated with the num-
ber of predicted genes for FA efflux pumps present in the ge-
nome. Phylogenetic analysis of predicted FA resistance proteins
(FUSC, an inner membrane transporter component of the efflux
pump) revealed that FUSC proteins having high sequence iden-
tities with the functionally characterized FA resistance protein
FusC or Fdt might be the major contributors of FA resistance.
In contrast, most fungi converted FA to less toxic compounds
regardless of the level of FA resistance they exhibited. Five de-
rivatives were detected, and the detoxification of FA involved
either oxidative reactions on the butyl side chain or reductive
reactions on the carboxylic acid group. The production of these

metabolites from widely different phyla indicates that resistance
to FA by altering its structure is highly conserved. A few FA
resistant saprophytic or biocontrol strains of fungi were incapable
of altering FA, indicating a possible involvement of efflux trans-
porters. Deployment of both efflux and derivatization mecha-
nisms may be a common feature of fungal FA resistance.

Keywords Fusaricacid .Resistance .Detoxification .Fungi .

Bacteria . Antibiotic resistance . Soil microbiome . FUSC .

FusC . Fdt . Efflux pump

Introduction

The fungal toxin fusaric acid (FA, Fig. 1; 5-butylpicolinic acid),
which is produced by species ofFusarium, acts as a snon-specific
toxin to plants and microbes. In plants, treatment with FA caused
several negative effects to cell integrity (Gaumann 1958; Marre
et al. 1993; Pavlovkin 1998; Jiao et al. 2013) and function
(Kohler and Bentrup 1983; D'Alton and Etherton 1984; Marre
et al. 1993; Samadi and Behboodi 2006). Other research suggests
that FA can act as a virulence factor in Fusarium wilt of banana
(Matsumoto et al. 1995; Dong et al. 2012), cotton (Liu et al.
2011), and tomato (Lopez-Diaz et al. 2017). Fusarium
oxysporum f. sp. vasinfectum genotypes (Fov) from California
and Australia produce greater than 1000 ppm of FA in culture
filtrates (Liu et al. 2016a). These high FA producing genotypes
and the sensitivity of cotton to FA (Gaumann 1957) are a sub-
stantial concern for cotton production.Mechanisms for resistance
to Fov that target fusaric acid synthesis, transport, and metabo-
lism have become a focus of new studies.

Soil-borne bacteria and fungi are potential sources of novel
resistance to FA. Resistance to FA by efflux pumps containing
FA resistance proteins (FUSC) and secondary metabolite
transporters have been explored in Klebsiella oxytoca
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(Toyoda et al. 1991), Burkholderia cepacia (Utsumi et al.
1991), Stenotrophomonas maltophilia (Hu et al. 2012) and
two FA producing Fusarium spp. (Crutcher et al. 2015;
Studt et al. 2016). Soil-borne fungi also may degrade or alter
FA into less toxic forms (Fakhouri et al. 2003; Crutcher et al.
2014; Crutcher et al. 2017).

Several derivatives of FA have been identified and tested for
phytotoxicity. The first derivatives detected in FA producing
Fusarium cultures were 9-hydroxyfusaric acid (9-HOFA, Fig.
1), also known as fusarinolic acid (Braun 1960), and 9,10-
dehydrofusaric acid (9,10-DHFA, Fig. 1) (Gaumann 1957).
Phytotoxicity of 9-HOFAwas significantly lower (p < 0.05) than
that of FA (Stipanovic et al. 2011a). Other derivatives include
fusaric acid methyl ester (Capasso et al. 1996), 9,10-
dihydroxyfusaric acid methyl ester, 10-carboxyfusaric acid meth-
yl ester (Burmeister et al. 1985), 3-butylpyridine (Vischetti and
Esposito 1999), fusarinol (FOH, Fig. 1) (Crutcher et al. 2014), 8-
hydroxyfusaric acid (8-HOFA, Fig. 1) (Crutcher et al. 2017) and
several others (Stipanovic et al. 2011a; Liu et al. 2016b).

In the case of Fusarium wilt of cotton, resistance to
phytotoxins produced by the pathogen may provide disease
control if incorporated into the host (Bell et al. 2003). FA
detoxifying microorganisms are a potential source of such
novel resistance. To identify new mechanisms of FA resis-
tance, we screened soils from three Fusarium-infested cotton
fields and isolated several microorganisms with high resis-
tance to FA. Using HPLC, these microbes and those from
available laboratory collections were evaluated for their ability
to alter FA into potentially less phytotoxic derivatives.

Materials and Methods

Isolation of FA Resistant Microorganisms from Soil Soil
collected from cotton fields infested with reniform nematode
and Fusarium near Baton Rouge, LA and Weslaco, TX were

obtained by A.F. Robinson (USDA ARS College Station, TX,
retired) and maintained under greenhouse conditions with an
alternating tomato-cotton rotation. Soil from Tallassee, AL
was collected from a cotton disease evaluation field. One gram
of soil was suspended in 10ml of distilled water and dilutions of
10−2, 10−3, and 10−4 were made. Each dilution was spread on
potato dextrose agar (PDA; Difco Laboratories, Detroit) plates
for fungi and Luria-Bertani agar (LBA; Sigma-Aldrich, St.
Louis) plates for bacteria, both containing 100 μg/ml FA.
Individual colonies of bacteria or fungi were transferred to slants
containing 500 μg/ml FA. Isolates that grew on the higher con-
centration of FAwere retained for further analysis.

Identification of FA Resistant Isolates from Soil Eight bac-
terial isolates from soil capable of growing on slants containing
500 μg/ml FA were selected for further testing and identifica-
tion. Pseudomonas spp. are common soil inhabitants (Fulthorpe
et al. 2008) and provide biocontrol of Fusarium and detoxifica-
tion of FA (Duffy and Defago 1997; Ruiz et al. 2015; Utsumi
et al. 1991). Therefore, these bacterial isolates were screened for
fluorescence on King’s B andKing’s Amedia (King et al. 1954)
and subjected to Gram stain. To further identify these isolates,
the biochemical activities of the bacteria were determined with
an API 20 E strip (bioMerieux, Inc., Durham).

Fungal isolates were evaluated microscopically for repro-
ductive structures to identify the strains to genus and partial
genes were sequenced to identify strains to species.
Aspergillus tubingensis was previously sequenced and identi-
fied (Crutcher et al. 2014). For Fusarium oxysporum, the
Fusarium oxysporum specific primer pairs, EF-1A and
EF1885R, PHO48F and PHO2034, BT100F and BT1828R,
were used to amplify and sequence the elongation factor gene,
the phosphate permease gene and beta tubulin (BT) gene,
respectively (Ortiz et al. 2017). Other primers used include
the BT primers BT2a and BT2b (Glass and Donaldson
1995), the internal transcribed spacer region (ITS) primers

N COOH N COOH

OH

N COOHN
OH

HO

COOH COOH

HO

N COOH
OH

2

3

4

5

6

7
8

9

10

11

Fusaric acid
(FA)

9-Hydroxyfusari cacid
(9-HOFA)

8-Hydroxyfusaric acid
(8-HOFA)

Fusarinol
(FOH)

9, 10-Dehydrofusaric
acid

p-Hydroxybenzoic acid
(pHBA)

6-Hydroxy-2-naphthoic acid
(6-HNA)

Fig. 1 Chemical structures of
fusaric acid and its derivatives
produced by fungal strains
investigated in the present study.
The structures of related aromatic
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ITS4 and ITS5 (White et al. 1990) and calmodulin (CL)
primers CL1 and CL2 (Serra and Peterson 2007).
Aspergillus flavus and Penicillium chrysogenum were identi-
fied by ITS and BT, Aspergillus terreus by BT and CL,
Rhizopus microsporus by ITS, and Talaromyces pinophilus
by CL sequences.

Resistance Measurements for Bacterial and Fungal
Isolates The FA resistant bacterial isolates from field soil, to-
gether with selected isolates from laboratory collections and a
yeast isolate (Table 1), were evaluated for their resistance to FA
by the agar dilution method (Masuda 1976). Bacterial suspen-
sions were plated on tryptic soy agar (TSA; Sigma-Aldrich, St.
Louis) containing 0, 50, 100, 200, 300, 400, or 500 μg/ml FA to
determine the minimum inhibitory concentration (MIC) by cal-
culating the lowest concentration of FA in which bacterial
growth was inhibited. The yeast isolate that grew as single cells

was evaluated in the same manner except Schizophyllum medi-
um (glucose 20 g/l, potassium phosphate monobasic 0.46 g/l,
potassium phosphate dibasic 1.28 g/l, magnesium sulfate 0.5 g/l,
yeast extract 2 g/l and peptone 2 g/l, Bacto agar 20 g/l) was used.
The tests were replicated three times.

The concentration of FA required to inhibit growth by 50%
(IC50) was measured for each fungal strain. Three mm diameter
plugs from the edge of active colonies on PDAwere transferred
to the center of PDA plates containing 0, 50, 100, 200, 300, 400,
or 500μg/ml FA. At 24 to 96 h, depending on the growth rate of
the specific fungus, the colony radius was measured in two
perpendicular directions. Four replications were used for each
FA concentration. The radial measurements were regressed
against FA concentrations and the IC50 was calculated using
the resulting regression equation. For all the fungal isolates,
the R2 value for growth inhibition by FA was more than 0.84
with the majority of the values above 0.95 (data not shown).

Table 1 Minimum inhibitory concentrations of fusaric acid to bacterial and yeast isolates and number of fusaric acid resistance FUSC proteins in the
genome

Strain Cell type MIC (μg/ml)a No. of FUSCb Sourcec

Acidovorax avenae G- bacillus <50 1 DCG, Georgia
Agrobacterium radiobacter ATCC49644 G- bacillus <50 1 PLPM, Australia
Burkholderia cepacia G- bacillus (500–800) 6 (Ouchi et al. 1989)
Burkholderia glumae 618 G- bacillus 200 2 PLPM, rice, Texas
Enterobacter cloacae ATCC13047 G- bacillus 100 2 RBM, spinal fluid
Erwinia amylovora 2029 G- bacillus <50 0 DCG, pear
Klebsiella oxytoca ATCC8724 G- bacillus 200 2 ATCC
Pseudomonas aeruginosa CDRpa1 G- bacillus 300 7 Baton Rouge soil
Pseudomonas aeruginosa CDRpa2 G- bacillus nd 7 Baton Rouge soil
Pseudomonas aeruginosa CDRpa3 G- bacillus nd 7 Baton Rouge soil
Pseudomonas aeruginosa CDRpa4 G- bacillus nd 7 Baton Rouge soil
Pseudomonas fluorescens CDRpf1 G- bacillus 400 4 Baton Rouge soil
Pseudomonas fluorescens CDRpf2 G- bacillus 300 4 Baton Rouge soil
Pseudomonas fluorescens CDRpf3 G- bacillus 200 4 Baton Rouge soil
Pseudomonas fluorescens CDRpf4 G- bacillus 200 4 Baton Rouge soil
Pseudomonas fluorescens Pf-5 G- bacillus (1250) 4 (Ruiz et al. 2015)
Pseudomonas marginalis ATCC10844 G- bacillus >500 2 DCG, plant derived foodstuff
Pseudomonas putida A514 G- bacillus 500 3 DCG, biocontrol, fruit tree
Pseudomonas syringae pv. syringae B728a G- bacillus 400 2 DCG, bean, Wisconsin
Serratia marcescens ATCC13880 G- bacillus 100 3 RBM, pond water
Stenotrophomonas maltophilia G- bacillus (512) 2 (Hu et al. 2012)
Xanthomonas citri pv. malvacearum G- bacillus <50 1 PLPM, cotton, Texas
Bacillus cereus ATCC14579 G+ bacillus <50 0 RBM
Bacillus subtillis ATCC6051 G+ bacillus <50 0 RBM, Marburg, Germany
Corynebacterium flavescens ATCC10340 G+ bacillus <50 0 RBM, dairy products, cheese
Curtobacterium flaccumfaciens G+ bacillus 200 0 DCG, bean, Nebraska
Lysteria grayi ATCC19120 G+ bacillus 100 0 RBM, animal feces
Micrococcus luteus G+ coccus <50 0 RBM
Micrococcus lysodeikticus G+ coccus <50 0 RBM
Micrococcus roseus G+ coccus <50 0 RBM
Staphylococcus epidermidis ATCC14900 G+ coccus <50 0 RBM, nose
Streptococcus mutans ATCC25175 G+ coccus <50 0 RBM, carious dentine
Candida albicans Yeast 100 0 RBM

aMIC concentrations in the parentheses are from cited references; nd, not determined
bNumber of predicted FUSC genes in the genome
c Strains were obtained from soil collected in Baton Rouge, LA, American Type Culture Collection (ATCC), Department of Plant Pathology and
Microbiology, Texas A&M University (PLPM), Dr. Dennis C. Gross, Department of Plant Pathology and Microbiology, Texas A&M University
(DCG), or Dr. Rita B Moyes, Department of Biology, Texas A&M University (RBM)
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FAModification by Bacterial and Fungal Strains To deter-
mine if chemical conversion of FA or another unidentified
method was the primary mechanism of resistance, cultures
of all bacterial strains and fungal strains that grew in the pres-
ence of 50 μg/ml or more of FA were analyzed by HPLC. A
single bacterial colony was inoculated into 2 ml of M9 medi-
um (Sigma-Aldrich, St. Louis) containing FA at half of MIC
concentration of the microorganism. Cultures were incubated
at 27 °C and 200 rpm. After 72 h, cultures were collected and
bacteria were spun down in a centrifuge at 10,000 rpm for
1 min. Culture filtrate samples (100 μl) were collected for
HPLC analysis. Pseudomonas spp., unable to grow in M9,
were grown in King’s B medium and analyzed.

Fungal isolates were grown on PDA and two 3 mm plugs
from the actively growing edge of the colony were used to
inoculate 10 ml of PDB containing approximately the IC50 FA
concentration of the fungal isolate. After 96 h, cultures were
centrifuged and 100 μl of three biological replicates were
collected for HPLC analysis.

HPLC Analyses of Culture Filtrates Culture filtrate was
subjected to analysis using a computer-controlled Agilent
Technologies HPLC instrument (Waldbronn, Germany)
equipped with a model 1200 solvent degasser, 1200 quaterna-
ry pump, 1100 autosampler, 1100 diode array detector (DAD)
and Rev.B.04.02 ChemStation-3D software. The analysis
method used an Agilent Zorbax Eclipse XDB-C18 (5 μm,
4.6 mm × 150 mm) column and an isocratic mobile phase of
15% acetonitrile (ACN) and 85% H2O (both containing 0.2%
formic acid) run at 0.80 ml/min for 15 min. The chromato-
gram signal was monitored at 275 nm (bandwidth = 20 nm)
referenced to 550 nm (bandwidth = 100 nm). Spectra were
collected over 190–600 nm. The injection volume used was
5.0 μl. Using this method, FA appeared at 5.0 min. Pure FA
(Stipanovic et al. 2011a), 9-HOFA (Stipanovic et al. 2011a),
and FOH (Crutcher et al. 2014) were used as standards for
identification and quantification. The quantification calibra-
tion curves for the three compounds were almost identical.
Pure 8-HOFA (Crutcher et al. 2017) and 9,10-DHFA
(Stipanovic et al. 2011b) were used as standards for identifi-
cation via retention time and UV-Vis spectra. These two com-
pounds and an unknown compound with a retention time of
3.2 min had UV-Vis spectra similar to that of FA (see Results
section). Therefore, the three compounds were quantified
using the FA quantification curve.

Bioinformatics Analysis Sequences for functionally charac-
terized fusaric acid resistant proteins FusC, Fdt-2 (Fdt), and
FuaA (Toyoda et al. 1991; Utsumi et al. 1991; Hu et al. 2012)
were used as query to BLAST probe the GenBank database
(https://www.ncbi.nlm.nih.gov/genome) to identify FUSC
proteins for the bacterial genomes listed in Table 1. Only
those sequences retrieved at an E-value lower than 0.05 were

taken into account. Other proteins such as transcription regu-
lators, membrane fusion proteins (MFP), outer membrane fac-
tors (OMF), and membrane associated DUF1656 proteins re-
siding in the same operon with the identified FUSC proteins
were identified by conducting the Conserved Domain search
with the retrieved respective sequences at NCBI (https://www.
ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Prediction of
transmembrane regions for the FUSC and DUF1656
proteins was accomplished using TMHMM Server v. 2.0
(http://www.cbs.dtu.dk/services/TMHMM/). A phylogenetic
tree of predicted FUSC proteins was constructed using the
Neighbor-Joining method implemented in the phylogenetic
analysis program of MEGA 6.0 (Tamura et al. 2007).
Kimura’s two-parameter distance option and pair-wise dele-
tion of gap option were used. Statistical support for the de-
rived tree was obtained by running 1000 bootstrap replicates.

The relationship between the FA resistance and the number
of FUSC proteins in the genome for Gram-negative bacteria
was modeled using a linear regression approach (PROC REG,
SAS version 9.4, SAS Institute Inc., Cary, NC). The log MIC
value was treated as the outcome variable and the number of
FUSC proteins as the regressor variable.

Results

Identification of FA Resistant Isolates FA resistant bacterial
isolates from soil were screened for fluorescence on King’s B
medium, which enhances the production of the fluorescent sec-
ondarymetabolite pyoverdine produced byPseudomonas (King
et al. 1954). All eight isolates fluoresced under UV light. To
determine if any of these eight were Pseudomonas aeruginosa,
each were plated on King’s A media. Pseudomonas aeruginosa
will fluoresce blue on this medium due to the production of
pyocyanin. Four strains were positive for fluorescence, and
therefore identified asPseudomonas aeruginosa. The remaining
four isolates were subjected to Gram stain and all were con-
firmed as small Gram-negative bacilli. The API 20 E strip iden-
tified these isolates as Pseudomonas fluorescens. The six fungal
isolates were identified bymicroscopic observation of reproduc-
tive structures and sequencing of the ITS, beta-tubulin, calmod-
ulin, elongation factor, or phosphate permease genes as
Aspergillus flavus, Aspergillus terreus, Fusarium oxysporum,
Penicillium chrysogenum, Talaromyces pinophilus, and
Rhizopus microsporus (GenBank accession numbers:
MF197729-MF197739).

FA Resistance of Bacterial Strains Highly resistant strains
with MIC values greater than 300 μg/ml of FA, 9 in total, were
found only in species of Burkholderia, Pseudomonas, and
Stenotrophomonas, which are Gram-negative bacilli (Table 1).
Only four out of 22 tested Gram-negative bacilli strains were
unable to grow in 50 μg/ml of FA. In contrast, only two strains
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withMIC values of 200 and 100 were found among the 5 tested
species of Gram-positive bacilli, and other strains were unable to
grow in the presence of 50 μg/ml of FA. None of five strains
with cocci morphology grew at 50 μg/ml FA.

The capacity to modify FA by bacterial strains that were able
to survive in 50 μg/ml FAwas evaluated by HPLC analysis of
filtrates from cultures containing FA at 50% of the MIC con-
centration. No change in the concentration of FA in the culture
filtrate of any of the strains was observed and no FA derivatives
were detected. These observations prompted the search for
known fusaric acid resistant proteins in the bacterial species’
genome that constitute a component of an efflux pump and
belong to the FUSC family (Toyoda et al. 1991; Utsumi et al.
1991; Hu et al. 2012) (Table 1). Genes coding for FUSC pro-
teins are present only in the Gram-negative bacteria with copy
numbers ranging from 0 to 7 and are dispersed discretely in the
chromosome(s). High copy numbers of FUSC generally
corresponded with high FA resistance of the bacterium.
Regression analysis of log MIC against copy number of
FUSC in the corresponding genome among the tested Gram-
negative bacteria showed the trend was significant (P = 0.014)
with the regression equation, log MIC = 1.88 + 0.13 x No. of

FUSC with R2 of 0.36. None of the strains that were incapable
of growing at 50μg/ml of FA hadmore than one copy of FUSC.

Sequence comparisons of functionally characterized FUSC
proteins, FusC in Burkholderia cepacia, Fdt in Klebsiella
oxytoca, FuaA in Stenotrophomonas maltophilia, revealed
identities of 21%, 24%, 41% between FusC and Fdt, FusC
and FuaA, Fdt and FuaA, respectively. The FUSC proteins
that had the highest sequence identity with FusC, Fdt, and
FuaA were identified in each Gram-negative bacterial ge-
nome, labeled correspondingly with FusC, Fdt and FuaA des-
ignations, and evaluated for their phylogenetic relationships
(Fig. 2). When two or three of the designated entries
corresponded to the same FUSC protein, only the designation
with highest identity was retained. The entry with the highest
identity score among the three FusC, Fdt and FuaA designa-
tions is indicated in bold in Fig. 2. These FUSC proteins
clustered either in clade III (FusC) or clade IV (Fdt and
FuaA) and are further labeled in italic, except the three
FUSC proteins (bold non-italic) from species that failed to
grow in 50 μg/ml FA which clustered in clade V with other
FUSC proteins. FUSC proteins that were annotated as aromat-
ic carboxylic acid efflux pumps (AaeB) were included as
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Fig. 2 Phylogenetic tree of predicted fusaric acid resistant proteins
(FUSC) of Gram-negative bacteria. The tree was constructed using
Neighbor-Joining method with Kimura’s two-parameter distance option
and pair-wise deletion of gap option. Statistical support for the derived
tree was obtained by running 1000 bootstrap replicates. The composition

of the operon containing FUSC protein was given in the entry’s label and
the size in amino acid sequence length are given in parentheses. When the
transcription factor is reversely oriented relative to other members of the
operon, it is indicated by ‘Rev’ following the size designation

J Chem Ecol



references (Van Dyk et al. 2004) and were clustered in clade I.
These proteins are effective efflux transporters of p-
hydroxybenzoic acid (p-HBA, Fig. 1) and 6-hydroxy-2-
naphthoic acid (6-HNA, Fig. 1). The remaining FUSC pro-
teins were clustered in clade V, except the Pseudomonas
aeruginosa Fdt and FuaA proteins which formed clade II.

Most of the operons containing FUSC proteins consisted of
a transcription factor in the family of LysR, GntR, MarR, or
AraC, an inner membrane efflux pump FUSC protein (652-
735aa), a putative inner membrane efflux pump associated
DUF1656 protein (DUF, 55-78aa), a membrane fusion protein
(MFP, 286-387aa), and an outer membrane factor (OMF) con-
taining double OEP domains (476-616aa) or a single OEP
domain (230aa). Prediction of transmembrane (TM) regions
by TMHMMServer v. 2.0 (Krogh et al. 2001) revealed 9 to 12
TMs with consensus of 10 TMs for FUSC proteins and 2 TMs
for DUF1656 proteins. Absence of DUF, MFP, or OMF in an
operon occurs occasionally with OMF being the most fre-
quent. Members of clad I had a synteny structure of LysR
(forward or reverse)-DUF-MFP-AaeB; clade IV, AraC (for-
ward or reverse)-Fdt (or FuaA)-DUF-MFP-OMF; and clade
III, LysR (Reverse)-OMF-FusC-DUF-MFP except Serratia

marcescens which had MarR (reverse)-DUF-MFP-FusC.
The majority of clade V members had a synteny structure of
MarR-Fdt-DUF-MFP-OMF.

FA Resistance and Detoxification Products of Fungal
Isolates Only two of the Ascomycetes, Verticillium dahliae
and Phymatotrichopsis omnivorum, and both of the
Oomycetes tested were unable to grow at 50 μg/ml of FA.
The other isolates ranged in IC50 from 45 to 533 μg/ml, with
Aspergillus tubingensis having the highest IC50 (Table 2).
Ascomycetes had the greatest resistance to FAwith IC50 values
greater than 200 μg/ml, except for Colletotrichum graminicola,
Sclerotinia minor, and Trichoderma reesei. The two
Zygomycetes evaluated, Mucor rouxii and Rhizopus
microsporus, grew in higher concentrations of FA than did the
Basidiomycetes which had IC50 values of 100 μg/ml or less.

Five derivatives of FAwere observed in culture filtrates of
fungal isolates when exogenous FAwas added to the growth
media (Table 3 and Fig. 1). 8, 9-DHFAwas produced only by
the two strains of Fusarium oxysporum with and without the
presence of exogenous FA. The concentration of 8, 9-DHFA
was higher when FAwas added than the negative control (data

Table 2 FA concentrations
inhibiting mycelium growth by
50% (IC50) for fungal species

Species Phylum IC50 (μg/ml) Sourcea

Aspergillus flavus CDRaf1 Ascomycete 303 Weslaco

Aspergillus terreus CDRat2 Ascomycete 432 Weslaco

Aspergillus tubingensis CDRat1 Ascomycete 533 Baton Rouge

Colletotrichum graminicola Ascomycete 56 CMK

Fusarium oxysporum CDR2047 Ascomycete 381 Tallassee

Fusarium oxysporum CA9 Ascomycete 400 (Kim et al. 2005)

Penicillium chrysogenum CDRpc1 Ascomycete 200 Baton Rouge

Penicillium roqueforti Ascomycete 346 PLPM

Phymatotrichopsis omnivorum Ascomycete <50 CMK

Sclerotinia minor Ascomycete 154 CMK

Talaromyces pinophilus CDRtp1 Ascomycete 365 Weslaco

Trichoderma harzianum YF Ascomycete 238 CMK

Trichoderma reesei 6 Ascomycete 108 CMK

Trichoderma virens Gv29–8 Ascomycete 306 CMK

Verticillium dahliae V76 Ascomycete <50 (Bolek et al. 2005)

Phanerochaete chrysosporium Basidiomycete 45 PLPM

Rhizoctonia solani J1 Basidiomycete 74 CMK

Schizophyllum commune Basidiomycete 75 PLPM

Ustilago maydis Basidiomycete 102 CMK

Phytophthora nicotianae Oomycete <50 VA

Pythium ultimum Oomycete <50 CMK

Mucor rouxii Zygomycete 269 PLPM

Rhizopus microsporus CDRrm1 Zygomycete 107 Weslaco

a Strains were obtained from Dr. Charles M. Kenerly, Department of Plant Pathology and Microbiology, Texas
A&M University (CMK), Dr. Veronica Ancona, Texas A&M University-Kingsville Citrus Center (VA), the
Department of Plant Pathology and Microbiology, Texas A&M University (PLPM), or from soil collected in
Baton Rouge, LA, Tallassee, Al, and Weslaco, TX
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not shown). 9-HOFA and 8-HOFAwere produced by a num-
ber of fungi in all the phyla represented. Three out of nine
isolates produced 9-HOFA but not 8-HOFA. In contrast,
FOH was produced by species that failed to produce both 9-
and 8-HOFA, or 8-HOFA among species that were able to
convert FA, except for Aspergillus flavus. Sclerotinia minor
produced a novel peak at 3.2 min (Fig. 3). The UV-Vis spec-
trum of the unknown was similar to that of FA indicating that
it was closely related to FA in structure (Fig. 3, inset).

Penicillium roqueforti, Trichoderma harzianum, and
Trichoderma virens failed to metabolize FA, while
Col le to t r ichum graminicola , Sclerot in ia minor,
Phanerochaete chrysosporium, Rhizopus microsporus,
Rhizoctonia solani, Schizophyllum commune, Trichoderma
reesei, and Ustilago maydis were able to completely convert
FA to derivatives. Talaromyces pinophilus also completely
converted 200 μg/ml of FA to FOH (data not shown). For
all isolates, the total concentration of FA conversion products

Table 3 Concentrations of detoxification products of fusaric acid by fungal species as analyzed by HPLC

Species FA
added

9-HOFA
(2.1 min)

8-HOFA
(2.3 min)

Unknown
(3.2 min)

FOH
(3.9 min)

9,10-DHFA
(4.2 min)

FA
(4.9 min)

Aspergillus flavus 220 93.7 ± 2.6 130.7 ± 6.0
Aspergillus terreus 325 113.0 ± 9.8 109.6 ± 8.3 123.8 ± 11.5
Aspergillus tubingensisa 426 20.5 ± 1.0 175.8 ± 32.0 246.8 ± 25.3
Colletotrichum graminicola 52 53.0 ± 2.9
Fusarium oxysporum 300 128.7 ± 5.7 40.0 ± 4.4 87.8 ± 1.9 48.6 ± 14.2
Fusarium oxysporum CA9b 325 193.6 ± 3.9 53.6 ± 3.1 137.1 ± 5.9 162.7 ± 13.3
Penicillium chrysogenum 180 30.2 ± 2.2 94.8 ± 3.1 57.4 ± 6.9
Penicillium roqueforti 297 272.9 ± 7.4
Sclerotinia minor 83 57.3 ± 2.4 26.0 ± 1.4
Talaromyces pinophilus 280 103.2 ± 20.7 187.1 ± 30.1
Trichoderma harzianum 188 162.3 ± 3.2
Trichoderma reesei 84 10.6 ± 1.0 72.5 ± 2.7
Trichoderma virens 220 230.6 ± 6.4
Phanerochaete

chrysosporium
56 52.5 ± 1.6

Rhizoctonia solani 80 26.6 ± 0.7 47.5 ± 0.7
Schizophyllum communeb 70 23.8 ± 3.4
Ustilago maydis 109 109.5 ± 1.8
Mucor rouxii 220 46.0 ± 19.5 75.1 ± 20.6 90.4 ± 20.0
Rhizopus microsporus 100 103.8 ± 3.5

Concentrations were expressed in μg/ml; times in the parentheses refer to the compounds elution times during HPLC analysis of the culture filtrate; FA:
fusaric acid; 9-HOFA: 9-hydroxyfusaric acid, also known as fusarinolic acid; 8-HOFA, 8-hydroxyfusaric acid; FOH: fusarinol; 9, 10-DHFA: 9, 10-
dehydrofusaric acid
a 8-HOFAwas produced in cultures of Aspergillus tubingensis containing 200 μg/ml exogenous FA
b The sum of the FA derivative concentrations produced by Fusarium oxysporum CA9 was greater than the concentration of FA added; The sum of the
FA derivative concentrations produced by Schizophyllum commune was less than the concentration of FA added
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Fig. 3 HPLC chromatograms of
cultures of Sclerotinia minor
supplemented with fusaric acid.
Culture filtrates taken at 0 h (top)
and 96 h (bottom) after adding
fusaric acid were analyzed and
show the formation of an un-
known compound at 3.2 min with
the associated disappearance of
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along with unconverted FA equaled the original concentration
of FA added, except for Fusarium oxysporum CA9 and
Schizophyllum commune. For these two isolates, a 68% in-
crease and a 66% decrease of total FA related compounds
were found in the culture filtrates compared to original added
FA concentration, respectively.

Discussion

Eight bacterial isolates obtained from the soil screen fluo-
resced on King’s A and King’s B agar, and were identified
as Pseudomonas aeruginosa and Pseudomonas fluorescens
by their chemical reactions on the API 20E strip. These
Pseudomonas spp. isolated from soil and the laboratory iso-
lates of Pseudomonas spp. were the only bacteria capable of
growth when exposed to greater than 500 μg/ml FA when
cultured as a lawn (data not shown). Under these conditions,
Gram-negative bacilli grew on higher concentrations than did
Gram-positive bacilli. To more thoroughly examine FA sensi-
tivity, MIC values were used to measure the ability of the
bacteria to grow on increasing amounts of FA as a discrete
colony. Under these conditions, Pseudomonas marginalis had
the highest MIC at greater than 500 μg/ml of FA with pseu-
domonads overall having the greatest resistance (Table 1).
These findings are supported by the observed resistance of
Pseudomonas spp. to FA and their effective use as biocontrol
agents against a variety of Fusaria (Duffy and Defago 1997;
Bolwerk et al. 2003; Quecine et al. 2016). Both Bacillus
cereus and Bacillus subtilis were incapable of growth at
50 μg/ml FA supporting previous reports of FA sensitivity in
Bacillus spp., and negating their effectiveness as biocontrol
agents against species of Fusarium (Bacon et al. 2004; Bacon
et al. 2006). All of the Gram-positive cocci tested in this assay
were incapable of growing in FA.

None of the bacterial isolates converted FA into its derivatives
and no decrease in the amount of FA in the medium was ob-
served during a growth period of 72 h in the presence of FA (data
not shown). We hypothesize that the primary mechanism for
high resistance to FA in Gram-negative bacteria is the transport
of the compound by an efflux pump. This theory is supported by
previous research with Klebsiella oxytoca, Burkholderia
cepacia, and Stenotrophomonas maltophilia revealing that
DNA sequences responsible for resistance encode efflux pumps
consisting of a FUSC family inner membrane transporter, a
MFP, and an OMF (Toyoda et al. 1991; Utsumi et al. 1991;
Hu et al. 2012). The production of siderophores also may pro-
vide resistance to FA in some bacterial species (Ruiz et al. 2015).

Both the number of FUSC proteins in the genome and
sequence identities of the FUSC proteins may contribute to
the effectiveness of the strains’ FA resistance. Regression
analysis of log MIC values against the number of FUSC pro-
teins in the genome showed a significant positive correlation

between them (P = 0.014, R2 = 0.36). FUSC proteins of the
FA resistant strains having the highest amino acid sequence
identities with the functionally characterized FusC, Fdt, and
FuaA clustered in clades III and IV: the FusC type (clade III)
and the Fdt/FuaA type (clade IV). This indicates that there are
two major types of FUSC FA resistance proteins and they are
probably the major contributors of FA resistance.

FUSC proteins also include the aromatic carboxylic acid
efflux pump proteins (AaeB) clustered in clade I. The sub-
strates for these proteins, pHBA and 6-HNA, like FA, contain
aromatic carboxylic acid moieties (Fig. 1). These compounds
are much less toxic than FA to E. coli with MIC values of
13,800 μg/ml for pHBA and 3760 μg/ml for 6-HNA (Van
Dyk et al. 2004) compared to 50 μg/ml for FA (Utsumi et al.
1988). Whether Aae pumps confer resistance to FA remains to
be elucidated. The OMFs are missing from these Aae operons,
but might reside outside the operon (Van Dyk et al. 2004).

The FUSC efflux pumps, like the related ABC, MFS, and
RND superfamilies tripartite efflux pumps of Gram-negative
bacteria (Daury et al. 2016; Hu et al. 2012; Saier and Paulsen
2001), are also composed of an inner membrane transporter
(FUSC), a periplasmic adapter protein MFP, and an outer
membrane channel protein OMF (Fig. 2). The almost univer-
sal presence of a small (less than 78aa) putative MFP associ-
ated DUF1656 family protein consisting of 2 transmembrane
segments suggests that this protein may be vital for the efflux
system. Only two other tetrapartite efflux systems have been
identified in Gram-negative bacteria (Delmar et al. 2014). The
Gram-positive bacteria lack FUSC proteins, yet two of the ten
tested strains were able to resist moderate concentrations of
FA (MIC less than 200μg/ml). Either a different efflux protein
or a formidable membrane barrier may be responsible for this
resistance (Bansal-Mutalik and Nikaido 2011).

Fungi also displayed a wide range of resistance to FA. Only
a few plant pathogens such as the oomycetes Phytophthora
nicotianae and Pythium ultimum, and ascomycetes
Verticillium dahliae and Phymatotrichopsis omnivorum were
highly sensitive to FA and unable to grow at 50μg/ml FA. The
oomycete Phytophthora infestans was previously found to be
sensitive to FA (Son et al. 2008). The plant pathogens
Ustilago maydis, Sclerotinia minor, Rhizopus microsporus,
Rhizoctonia solani, andColletotrichum graminicolawere also
sensitive to FAwith IC50 values less than 160 μg/ml FA. Like
the tested bacterial strains, no fungal isolates, even the FA
producing Fusarium isolate had complete resistance to FA.
The strains with the highest IC50 values were species of
Fusarium or saprophytic/beneficial microorganisms that are
ubiquitously found in soil environments.

Unlike the bacteria and the yeast screened for this work,
various derivatizations of FA by filamentous fungi were ob-
served for both the soil and laboratory isolates. Four of the five
detected FA derivatives were previously characterized as the
less toxic compounds 9-HOFA (Stipanovic et al. 2011a), 8-
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HOFA (Crutcher et al. 2017), 9,10-DHFA (Stipanovic et al.
2011b), and FOH (Crutcher et al. 2014). The remaining FA
derivative produced by Sclerotinia minor appears to be a nov-
el compound. Future work will include identifying this com-
pound and testing its phytotoxicity. Thus, these fungi are able
to resist FA through modifying FA into less toxic compounds.
Only a few fungi, namely Penicillium roqueforti ,
Trichoderma harzianum, and Trichoderma virens, were inca-
pable of modifying FA yet had relatively high resistance
against FA. Like for Gram-negative bacteria, efflux by trans-
porters may be the primarymechanism for the FA resistance in
these fungal isolates. In FA producing Fusarium spp., both the
FA efflux by a MFS transporter and derivatization of FA into
less toxic 9-HOFA and 9,10-HDFA are responsible for FA
resistance (Crutcher et al. 2015; Studt et al. 2016).
Deployment of both efflux and derivatization mechanisms
may be a common feature of the FA resistance of fungal iso-
lates and requires further elucidation.

9-HOFA, 8-HOFA, and 9,10-DHFA are oxidized FA deriv-
atives, while FOH is a reduced FA derivative. In most cases,
when the reductive pathway product FOH dominated the deriv-
atization products of FA by an isolate, none or minor amounts of
oxidized FA derivatives were produced. Likewise, when oxida-
tive FA derivatives constituted the majority of the derivatized
products, no reductive derivative of FAwas observed (Table 3).
Thus, the oxidative pathway and the reductive pathway seem to
be alternative biological adaptations. Both the reductive and
oxidative pathway FA derivatives, FOH, 9-HOFA, and 8-
HOFA, were produced by all the phyla of filamentous fungi
tested: Ascomycota, Basidiomycota, and Zygomycota. The
presence of these enzymatic reactions in such evolutionarily
distant fungi indicates that these mechanisms of detoxification
are preserved or convergent and may serve other functions.

Overall, there were substantial differences in resistance
among fungal isolates; however, there was no correlation be-
tween the level of resistance to FA and the ability to alter FA.
Even though their IC50s were lower than 100 μg/ml FA,
Colletotrichum graminicola, Phanerochaete chrysosporium,
and Schizophyllum commune reduced FA to FOH and
Rhizoctonia solani oxidized FA to 9- or 8-HOFA.
Previously, only microorganisms with high resistance to FA
were evaluated for detoxification of FA (Utsumi et al. 1991;
Fakhouri et al. 2003; Crutcher et al. 2014). The observation of
a variety of chemical modifications of FA by strains with low
FA resistance, including the production of the unknown com-
pound by Sclerotinia minor, indicates that other resistance
mechanisms may exist. The loss of FA from cultures of
Schizophyllum commune without an increase of an apparent
derivative suggests that FA was completely catabolized. In
contrast, the concentration of FA derivatives plus unconverted
FA exceeded the initial concentration of FA added to cultures
of Fusarium oxysporum CA9, due to continuing synthesis of
FA by the isolate.

A cytochrome P450 was implicated in the production of 9-
HOFA and 9,10-DHFA, but this gene was not found within
the FA biosynthetic cluster of Fusarium fujikuroi (Studt et al.
2016). Two enzymes, a carboxylic acid reductase and an al-
cohol oxidoreductase would be required to reduce FA to FOH
(Li and Rosazza 2000). Trichoderma reesei 6 converted 86%
of added FA to FOH. The availability of a complete genome
sequence for this isolate (http://genome.jgi.doe.gov/Trire2/
Trire2.home.html) would be useful for discovery of genes
that encode for these enzymes.

Potential dissemination of Fusarium oxysporum f. sp.
vasinfectum strains from Australia and California (Davis
et al. 1996; Davis et al. 2006) that produce large quantities
of FA are a threat to U.S. cotton production. The discovery of
resistance mechanisms that detoxify FA could provide
methods for the production of transgenic cotton cultivars with
resistance to Fusarium wilt or be used to improve efficacy of
biocontrol agents. The results presented here provide numer-
ous targets for gene discovery in several fungal species, in-
cluding those with genome sequences available.
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