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ABSTRACT 

This paper presents a cost analysis and adaptation evaluation of the climate change impacts on 

the highway network of the Netherlands. Impact analysis is a growing trend in climate change 

adaptation research but there is a lack of detailed quantitative modeling. Results are often 

provided at the national or international scale for economic and policy support. Our work 

modifies an existing cost modeling methodology, the Infrastructure Planning Support System, 

and is intended to produce results that are more detailed and pertinent at the organizational level. 

The two main objectives are: 1) refining the stressor-response relationships and cost of 

adaptation calculation between climate change and porous asphalt and 2) increase the spatial 

granularity of analysis through use of Regional Climate Models (RCMs). As a case study, 

climate change impacts are investigated for the Dutch highway network through collaboration 

with Rijkswaterstaat (the Dutch national highway organization). Costs are then calculated for 

alternate adaptation strategies through 2100. Potential vulnerabilities and increased operational 

costs for porous asphalt are of particular concern in the Netherlands, as the large majority of 

Dutch roads are paved with porous asphalt. Initial results reveal regional variability but highlight 

the overall trend that proactive adaptation is financially advantageous, in some cases producing 

savings of up to €90 million annually. Also, the results reveal a trend in which regional climate 

models predict costs that are typically higher than those calculated using global models. 

 

KEYWORDS: Climate change adaptation, roads, transportation organizations, infrastructure 

planning 

 

INTRODUCTION 
Climate change adaptation research has been a quickly growing field as scientists and 

practitioners now acknowledge that even with mitigation the planet will experience certain 

unavoidable levels of climate change (IPCC 2007). While the questions of how much and when 

are still debated, there has been an increasing search for improved understanding of the potential 

impacts on transport infrastructure from future climate change. There are also several detailed 

research works that have analyzed specific material responses to climate change, such as 

pavement implications (Mills et al 2009). As a larger quantity of data is produced, it is important 

to examine the scientific robustness, but also the relevance and usability of that information for 

the infrastructure designers and operators. 
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Organizations, often public organizations, already are and will continue to be responsible 

for planning and implementing climate change adaptation measures in the future. This is 

especially true for the transportation infrastructure sector, which is primarily managed by public 

agencies and requires long-term planning of both design and maintenance. In order to anticipate 

and plan for changes that may be required in the uncertain future, these agencies require 

information that is more detailed than sector-wide analysis but less in depth than material 

property studies. The research project described in this paper builds on those efforts by 

combining economic modeling and material science while also maintaining an organizational 

perspective. The work intends to advance the science of climate change adaptation research 

through improvements to the modeling methodology, while also producing results that are more 

relevant and implementable at the organizational level. 

Within the transportation sector highway organizations face a difficult challenge, as roads 

are a particularly vulnerable part of infrastructure. For example, as much as half of road 

maintenance costs are attributable to weather stresses (Nemry and Demirel 2012). Roads are 

designed to operate with minor variability in weather but long-term changes in climate are not 

accounted for in current planning and design standards. Changes in temperature and precipitation 

may result in positive outcomes, in the form of warmer winters for example, but also potentially 

severe negative outcomes from increased rainfall and higher temperatures (Peterson et al. 2008). 

It is important for transportation (highway) agencies to understand and adapt to these 

impacts for the end-users safety, for their own organizational benefit (e.g. cost and resource 

efficiency) and also because of the role that roads play in national commerce and international 

trade. Consequently, as the need for evaluation of adaptation options and costs has been 

established, research on climate change and roads has become increasingly quantitative, 

highlighted in the U.S. by Chinowsky et al (n.d.). However, these economic modeling results are 

not intended to be organization-specific but instead are more useful at the national policy level 

(Jotzo 2010). 

This work addresses that gap by analyzing climate change impacts to the Dutch road 

network using data, technical design requirements, and organizational characteristics specific to 

Rijkswaterstaat (RWS), the highway agency of the Netherlands. Motorways are analyzed, in part 

because that is the only type of road that RWS directly manages, but also because motorway 

costs are ten times higher than other road types in Europe (Doll and Van Essen 2008). Higher 

costs of construction and maintenance equate to higher risk and potentially higher costs of 

inaction. The highway network is also a high priority in the Netherlands, as it connects the 

country’s economically valuable ports with all of Europe. 

  This paper uses the previously developed Infrastructure Planning Support System 

(Chinowsky et al 2011) to analyze the Dutch case study. Inputs are modified to appropriately 

reflect RWS’s pavement characteristics and costs. The model produces initial results with global 

climate input that has been used for previous case studies. Regional climate models, which are 

capable of a higher resolution, are then used to produce additional results. These two outcomes 

are compared and the costs of alternate adaptation options are presented nationally and 

regionally through 2100.  

BACKGROUND 

The research setting for climate change adaptation and the current state of road impact 

studies are first described. This includes motivations for selecting the Netherlands as a case 

study. Then the research method is described, primarily through explanation of the assumptions 
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and process of the IPSS model. This also includes the current selection of the Dutch data source 

for both climate and roads. Initial data (modeling results) are presented, followed by discussion 

of future research and overall implications of the current and expected results. 

 

Climate change adaptation and road infrastructure 

 

 Climate change research has evolved from focusing primarily on mitigation to include the 

exploration and evaluation of adaptation options. While there continues to be debate over the 

merits and means of mitigation, there is general consensus that some form of adaptation will be 

required to address the amount of climate change that is now unavoidable (IPCC 2007). 

Economic modeling of the impact and adaptation costs has been completed in many industry 

sectors, especially in agriculture and water resources (Tol 2002). This broad quantification of the 

potential impacts is an important tool for economists and policy-makers. But as Jotzo states in 

his report on the limitations of economic modeling for climate change adaptation, more detailed 

sector-specific modeling is required to enable local adaptation action (Jotzo 2010). 

 This is true within the transportation sector and there are an increasing number of 

studies, (Jaroszweski et al. 2010, Peterson et al. 2008, TRB 2008) that examine the risks of 

climate change to transportation infrastructure. Specifically, higher temperatures and increased 

precipitation will result in the acceleration of road degradation, primarily through rutting and 

raveling. The quantification and modeling of cost impacts is being researched (Chinowsky et al. 

n.d., Nemry and Demirel 2012), however there are still few detailed studies, such as Mote et al. 

(2012) in the United States, which analyze climate and road characteristics that are unique to a 

specific organization. As stated in a report on climate change impact to European Union rails and 

roads, “Both vulnerability and adaptation costs would need to be assessed under a much higher 

spatial resolution” (Nemry and Demirel 2012). 

Some of the sector-specific modeling that has previously been completed for road 

transportation was executed using the Infrastructure Planning Support System (IPSS). This 

support system was developed by the Institute for Climate and Civil Systems at the University of 

Colorado Boulder to model the cost impact of adaptation options for climate change and road 

infrastructure. In addition to the social benefits of roads in developing countries, this work also 

detailed the importance of roads to the overall economic success of a country (P. Chinowsky et 

al. 2011). This is especially true for the highway system of the Netherlands. 

 

The Netherlands 

 

 With the busiest seaport in Europe (AAPA 2013) and the reputation as a major 

worldwide transportation hub, the Netherlands relies heavily on the success of their road 

network. It is the largest inland shipper of goods in Europe, transporting them from the Port of 

Rotterdam to all parts of Europe using the country’s motorway system. The Netherlands also 

constitutes approximately 14 percent of all international road travel in the European Union 

(“Logistics gateway to Europe and beyond” 2013). As stated on their government’s website, it is 

a priority for the Netherlands to increase their economic competitiveness worldwide by 

continually improving their road infrastructure (“Freight transport by road” 2013). This includes 

safety, environmental, and efficiency concerns. 

The Dutch place significant emphasis on long-term planning, sustainability, and 

optimization (Van der Valk 2002). They frequently reevaluate their existing systems to ensure 
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current solutions are still the most effective. This includes their road network, highlighted by 

Snelder et al (2005) and by Rijkswaterstaat, the Dutch highway agency, which has begun 

investigating the climate change risks to their road network. It is a main topic in their annual 

report (RWS 2012) and they participated in a World Road Association study, in which road 

infrastructure owners/operators expressed a need for “methodologies for mapping of 

critical/vulnerable infrastructure and estimating the costs of adapting to climate change” (WRA, 

2012). These characteristics, along with a large collection of available data, make the 

Netherlands an effective case study for this project. 

 

Porous Asphalt Pavement 

As described previously, the Dutch include environmental concerns in their road network 

planning. This includes the impact to surrounding environment, as well as quality of life for 

nearby citizens. With a small land area and dense road network, people in the Netherlands often 

live near highways and noise reduction is therefore an environmental consideration for road and 

land use planning. As the population grows and the use of automobiles increases, RWS has made 

noise reduction a priority (Van der Valk 2002, Huurman et al. 2010). As a result, as well as for 

additional reasons such as drainage, the Dutch road network is now constructed with 

approximately 90% porous asphalt pavement. 

Porous asphalt (PA) pavement is characterized by a high percentage of interconnected 

voids in the top friction layer of the pavement. This creates high permeability and is also capable 

of reducing tire noise. A major motivation for its use in the Netherlands is that it is more cost and 

space efficient than sound barriers (Alvarez et al. 2006). PA pavements also have high resistance 

to rutting (Miradi 2009). Despite these benefits of using porous asphalt, there are drawbacks, 

which are important to consider in the context of climate change. Porous asphalt has a limited 

lifespan that is shorter than most alternative pavement types (Miradi 2009), it is susceptible to 

increased raveling and accelerated aging from rainwater and de-icing salt (Su 2013), and it has 

been shown that noise reduction effectiveness can be significantly reduced with age and clogging 

of pores (Bendsten et al. 2005). These will be important for RWS to consider when evaluating 

the long-term effectiveness of PA pavement in a changing future climate. 

RESEARCH METHOD  

The research is conducted through a combination of climate modeling, empirical data 

analysis, and adaptation of the existing climate change adaptation modeling system, IPSS. The 

model has been used for several case studies, including countries in Europe (P. Chinowsky et al. 

2011), but until now the model has been used primarily for developing countries. The adaptation 

analysis was performed at an economy-wide scale for planning, policy, and investment 

implications.
 
Using the Netherlands as a case study, the IPSS model is expanded to include 

country-specific road characteristics and increased granularity of analysis. The methodology for 

incorporating country-specific road design and maintenance data is important for strengthening 

the relationships between climate stressors (temperature, precipitation) and physical road 

response (damage). The increased granularity provides a more focused, regional analysis that 

will assist in planning and investment decisions, particularly if a country experiences a wide 

range of climate. 
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Infrastructure Planning Support System (IPSS) 

 

Cost modeling is completed using IPSS, the climate adaptation modeling system 

designed by the Institute for Climate and Civil Systems (iCliCS) at the University of Colorado 

Boulder. Previous versions of the IPSS model analyzed paved, gravel, and dirt roads primarily 

for developing countries. This research expands on the paved road portion of the model by 

increasing the capacity to analyze in greater detail and include the porous asphalt road type.  

The climate data is initially analyzed on a 0.5
o
 by 0.5

o
 (longitude/latitude) grid for 

temperature and precipitation. Using higher resolution regional climate models, additional 

analysis is performed at the 0.25
 o

 by 0.25
 o

 scale. The forecasted climate change within each grid 

cell is applied to the length of road located in that same grid to analyze the impact on road 

performance and design life. 

The model uses thresholds and stressor-response functions to predict the impact that 

changes in climate stressors, in this case temperature and precipitation, will have on a road. The 

functions relate incremental changes in temperature and precipitation, i.e. changes that cross a 

predetermined threshold, to changes in design or maintenance that will “climate-proof” the road 

against the future climate. In the Chinowsky and Arndt (2012) paper, more detailed explanation 

of the functions, stressor-response methodology, and thresholds can be found. Chinowsky et al 

(2013) also provides background on the impact functions and underlying assumptions of the 

model. For this case study, the basic assumptions and process of the model remain the same. 

However, Dutch road design parameters – including cost, lifespan, and pavement type – replace 

the original IPSS road inputs. Combined with the downscaled climate modeling, this modifies 

the system to produce results that are organization-specific and on a finer spatial scale than 

previously attained. 

The IPSS results are presented based on two alternate adaptation strategies. The “no 

adapt” strategy calculates costs based on increased maintenance that is required to maintain the 

design life of the road, without altering the initial design of that road. The “adapt” strategy 

calculates costs for altering the initial design of a road to be more climate resilient during its 

lifespan, rather than preserving the initial design life exclusively through maintenance. The 

adaptation evaluation is performed at the beginning of each road’s design life. If the climate 

model forecasts that a threshold will be crossed during a road’s design life, the cost for adapting 

and not adapting are then calculated. The costs are calculated each year as a percentage of the 

total road network is renewed. Using data from RWS in the Netherlands produces quantitative 

results that are based on actual costs, policy, and procedure, making them more actionable for the 

infrastructure planners. 

 

Climate 

 

In addition to the global climate models that IPSS typically utilizes, this case study 

includes downscaled climate data that is specific for the Netherlands’ region of Europe. 

 

Climate description of the Netherlands 

The Netherlands has a temperate maritime climate, with cool summers and moderate 

winters. The country is small and, as a result, there is little variation inland, although the 

influence of the sea is noticeable in the western part of the country. Daytime temperatures vary 
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from 2-6 °C in wintertime and 17-20 °C in summertime. Precipitation is distributed equally 

throughout the year. 

 

Regional Climate Model Simulations 

Regional Climate Models (RCMs) are a complementary research method to the coarser 

resolution Global Climate Models (GCMs). High resolution is one key advantage of RCMs 

(spatial resolution of 25-50 km) compared with GCMs (spatial resolution at best around 100-200 

km), especially in regions with variable land forms or characteristics. The quality of a RCM 

simulation, with a spatial resolution of 25-50 km, is dependent by the RCM itself and by the 

driving GCM.  

The ENSEMBLES project was a large research program founded by the European 

Commission in 2004. The main aim, and core, of the ENSEMBLES project was running multiple 

climate models (‘ensembles’) with the aim to produce a range of future predictions assessed to 

decide which of the outcomes are more likely (probable) than the others.  

In the ENSEMBLES project, fifteen institutes ran their RCMs at 25 km spatial resolution, 

with boundary conditions from five different GCMs, all using the same SRES emission scenario. 

In this study it was decided to use one model per institute and only those models that extended 

their simulation until 2100. This leads to Table 1 that lists the eight models that are used in this 

study. [ENSEMBLES 2009] 

 

Table 1: List of RCMs used in this study with their driving GCMs 

RCM Driving GCM Reference 

CNRM ALADIN  ARPEGE  (Radu, et al. 2008)  

DMI HIRHAM  ECHAM5  (Christensen, et al. 2006)  

ICTP REGCM  ECHAM5  (Pal, et al. 2007)  

KNMI RACMO  ECHAM5  (Van Meijgaard, et al. 2008)  

MPI REMO  ECHAM5  (Jacob 2001)  

SMHI RCA  BCM  (Kjellström, et al. 2005)  

METOFFICE HadRM  HadCM3 (Pope et al. 2007)  

ETH CLM  HadCM3 (Böhm et al. 2006) 

 

Road network 

 

The Netherlands has one of the densest road networks in the world with approximately 

137,000km (IRF 2012). As described previously, the road network selected for this study was 

limited to motorways. Rijkswaterstaat directly manages the motorways and they are of critical 

economic importance to the country. Thus, the total length of the road network was determined 

to be 4,472 km (RWS 2012). Currently, the national total is distributed regionally based on 

population and land area weighting. The amount of roads allocated to each province is based on 

the following Equation (1. The resulting distribution is shown in Figure 1. 

 

(1)           ((
    

    
)  (

  

  
)) 

Where:  

R = Roadstock (km) 

Pop = Population 
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A = Land area (km) 

Subscript P = Province 

Subscript N = National 

 

  

 
Figure 1: Road Network Distribution by Province 

 

In addition to the total length, the road (pavement) type needed to be defined for the network. As 

previously described, a large majority, approximately 90%, of roads in the Netherlands 

(Huurman et al. 2010) are porous asphalt (PA). The majority of those roads are paved with 

ZOAB – Zeer Open Asfalt Beton – the PA design that is specific to Rijkswaterstaat. For 

modeling purposes, the assumption was therefore made to define all roads as ZOAB. Future 

work will include exploration of the possibility to include additional pavement types. There is 

existing research on PA pavement features (see background above for references) that defines 

general design life and cost, but in order to be as organizationally applicable as possible, these 

were defined for ZOAB specifically. 

The lifespan of porous asphalt, ZOAB included, can be highly variable. In a Dutch report 

on road management modeling, historic life cycle and maintenance characteristics of ZOAB are 

provided in detail. ZOAB design life has been observed to be as short as 5 years and as long as 

20 or more. Based on the data, the average lifespan is approximately 11 years, which we selected 

for this case study (CROW 2002). 

The end of a road’s lifespan in the Netherlands is determined by the next instance when it 

requires resurfacing. Therefore, the construction cost for ZOAB roads in the Netherlands was 

selected as the average cost of resurfacing per kilometer (€615,000), rather than the cost to 

completely construct a new road, including excavation, sub-base, etc. Similarly, routine 

maintenance on ZOAB roads in the Netherlands is typically considered to be winter 

maintenance, small patching, and crack repair. That cost per kilometer (€130,000) was also 

selected from Van der Wal (2005) and input into IPSS. 
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RESULTS AND DISCUSSION 

 

The research is currently ongoing. In this paper, we focus on two analyzes for 

comparison. For both scenarios, the pavement characteristics and costs were updated from the 

default values to the Dutch case. First, the model was run with the suite of 56 Global Climate 

Models used in previous IPSS case studies. Second, the model was run with the collection of 

eight Regional Climate Models. The results are reviewed for the cost implications to the 

Netherlands. They are also compared with each other in the context of what effect climate 

downscaling has on the cost output. 

 

Total Costs 

Figure 2 below shows the total cost of climate change to the Netherlands through 2100 in 

quartiles. It is clear from these results that at a national level, adaptation will cost less by the end 

of the century than no adaptation. For example, in the 75
th

 percentile model results using Dutch 

RCMs, the savings from adaptation are approximately €10 billion. The chart also highlights the 

difference between results using global versus regional models. At the lower quartiles, results for 

GCMs are similar and in once instance higher than the costs from regional models. However, the 

general trend is that regional models, which are a higher-resolution input, produce cost outputs 

that are higher than with GCMs. If it is assumed that RCMs are more accurate than GCMs, then 

these results show that the more accurate cost values are higher than the original model output. 

This is particularly true for the higher quartiles, or the so-called “worst case scenarios.” 

 

 

 

Annual Costs 

Table 2 and Figure 3 below provide greater detail for the median and maximum results. 

The average annual cost is presented at three points between the beginning of the simulation 

(2011) and the end (2100). As seen above, there are general trends that adaptation will typically 

cost less than no adaptation, and that the RCMs predict higher cost of both strategies than the 

GCMs. While reviewing the timeline results it is helpful to refer back to a previous point made in 

the introduction that it is less a question of if adaptation is appropriate, but when. Some of the 

results, particularly in the maximum RCM scenario, show costs that are very similar between 

adapting and not adapting, until 2050. At that point, the climate changes more drastically than in 
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the previous 40 years and the adaptation advantage becomes more pronounced. There are, 

however, cases where adaptation saves money from the beginning, as seen in the 75
th

 percentile 

RCM scenario. 
Table 2: Average Annual Cost of Climate Change 

  
GCMs 

   Average annual cost (million Euros) 

  Median Maximum 

  adapt no adapt adapt no adapt 

2030 € 17.38 € 30.23 € 42.52 € 58.10 

2050 € 15.01 € 48.14 € 44.55 € 94.17 

2090 € 19.49 € 53.71 € 42.05 € 100.62 

     

  

RCMs 

   Average annual cost (million Euros) 

  Median Maximum 

  adapt no adapt adapt no adapt 

2030 € 36.05 € 43.43 € 170.06 € 172.23 

2050 € 40.47 € 45.92 € 187.24 € 191.54 

2090 € 39.09 € 106.53 € 134.94 € 224.46 

 

 

 

 

Regional Costs 

Costs are also calculated regionally, by province. The average cost for each strategy is 

shown below in Figure 4. These regional variations are important to examine because 

Rijkswaterstaat’s organization and planning is performed at the regional level and not all 

national trends will be applicable to each province. Both the GCM and RCM results show similar 

distribution by province. Noord-Brabandt, Gelderland, and Noord-Holland have the three highest 
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annual costs, when the GCM input is used. Noord-Brabandt, Gelderland, and Zuid-Holland are 

the three highest with RCM input. Regional costs vary greatly, as seen in the €110 million 

difference between Noord-Brabant and Flevoland in the RCM projections. These variations are 

influenced by the roadstock input and the climate data. As future work refines the road length per 

province, the accuracy of the regional results will increase. Variation caused by the climate 

modeling will likely not change, as the modification from GCM to RCM has already been made. 

As expected, the RCM results show a greater level of variation (€110 million) between provinces 

than the GCMs (€60 million). 

 

 

 

€ 0.00 

€ 20.00 

€ 40.00 

€ 60.00 

€ 80.00 

€ 100.00 

€ 120.00 

m
il

. 
E

U
R

 

RCMs Adapt No Adapt

€ 0.00 

€ 20.00 

€ 40.00 

€ 60.00 

€ 80.00 

€ 100.00 

€ 120.00 

m
il

. 
E

U
R

 

GCMs Adapt No Adapt

Figure 4: Average Annual Cost of Climate Change, per Province 



Proceedings – EPOC 2013 Conference 

11 

 

LIMITATIONS/FUTURE RESEARCH 

Economic modeling of climate change adaptation is limited by uncertainties in climate 

modeling (Jotzo 2010). One method to combat this is to include a large range of models in the 

analysis so that a distribution of potential outcomes is obtained. In this case, the range of GCMs 

provides a larger data set. While the Dutch climate collection includes fewer models, the regional 

modeling provides higher resolution data. The project currently uses 8 RCMs compared to the 56 

GCMs. The 8 regional models were selected due to data requirements (temperature and 

precipitation data through 2100) but additional models may be used in the future to provide a 

larger set of results.  

In addition to climate data, the quality and specificity of other input data influences the 

output of the model. While the Dutch cost data and pavement characteristics are an improvement 

over the original inputs, there is still an unavoidable level of simplification. A main goal of this 

research is to produce results on a finer scale that are also organization-specific. Therefore, 

future research will attempt to expand the inputs to include several types of asphalt pavement 

rather than assuming one type for the entire road network. Similarly, construction costs, 

maintenance costs, and lifespan will be updated based on these additional road types. 

For cost, damage, maintenance, and climate interactions, empirical relationships from 

historic data will be used, when possible. For example, the equation converting air temperature 

to pavement temperature has been updated for the Dutch climate. Dutch government 

meteorological data is combined with pavement temperature measurements to create a 

relationship that is specific to the regional climate and the road properties. This equation and 

other inputs will continue to be updated as additional information is received from 

Rijkswaterstaat. 

 

CONCLUSION 

 

The combination of Rijkswaterstaat’s reputation for long-term planning, strict 

maintenance procedures, and recent budget constraints (RWS 2012) further highlights the need 

for adaptation analysis that addresses their organization and regional priorities, not just sector-

wide concerns. The detailed climate, pavement, and cost data advance the adaptation modeling 

and also produce more accurate and actionable results. This improves support for decision-

making, long-term planning, design, and maintenance within the organization. 

The initial results from IPSS support the thesis that in most regions it is not a question of 

if, but when, is the appropriate time to adapt. The challenge that climate change presents for road 

infrastructure is a short and long-term concern. The cost through 2100 in the Netherlands is as 

high as €21 billion. If a proactive adaptation approach is properly managed, however, it could 

save as much as €10 billion during that time. There are also potential opportunities from a 

changing climate in the Netherlands. In some regions, drier climate will require less robust 

drainage design and as future research will investigate, warmer winters could reduce damage and 

subsequent maintenance on highways. 

It is particularly useful for the Netherlands to review the impacts of climate change in 

respect to analogous climate. They rely almost entirely on porous asphalt and it is imperative for 

the long-term sustainability of the road infrastructure that PA roads will still be resilient and 

effective under future climate conditions. The results presented in this paper are intended to 

provide insight into that future and also support the ability for an effective organizational 

response. 
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