8,038 research outputs found
Visual Focus and Sports Performance
Understanding how an athlete’s mind and body interact is vital in finding ways to promote maximal athletic performance. Athletes are required to smoothly connect their external environment to internal motor networks for executing sports specific tasks. A study by Corbetta and Shulman aimed to explain how quiet eye (QE) connects with athletic performance. Their study defined QE as the “final fixation to a target during the preparation phase of a goal-directed movement” (2002). Corbetta and Shulman found that QE measurements were longer when maximizing “goal-directed” attention and minimizing “stimulus-driven” attention (2002). PURPOSE: This study analyzes the distance between where an athlete looks and where they kick to understand how gaze correlates with kick accuracy. We hypothesize that shorter kick-to-gaze distances predict higher accuracy kicks due to minimizing external gaze deviation so that internal networks create purer signals that increase penalty kick execution. METHODS: Participants completed a series of 24 penalty kicks, performing 6 penalty kicks within each of four conditions: No Keeper/No Target, Keeper/No Target, No Keeper/Target, and Keeper/Target. Having a target indicates that the participant was required to look at a red cardstock (RC) posted to the center of the crossbar before completing their kick. Eye movements were recorded, along with penalty kick quality and accuracy. Kick quality was measured using ball velocity, while kick accuracy was determined by whether the goal was scored. Eye movement patterns were collected using TOBII eyeglass equipment, which recorded fixation duration and count along with visit duration and count among various areas of interest. There were 7 areas of interest total. 6 areas divide the goal into Top Left (1), Bottom Left (2), Top Center (RC) (3), Bottom Center (4), Top Right (5), Bottom Right (6) regions and one area of interest was assigned for the ball (7). RESULTS: Analyzing where participants looked prior to their kick identified that athletes spend the greatest time looking towards the center region of the goal for all experimental conditions; No Keeper/No Target = 51.3% of kicks, Keeper/No Target =55.1%, No Keeper/Target = 76.9%, and Keeper/Target = 74.3%. Regarding ball landing location, the distance from center decreased the longer a participant looked at the ball prior to kick. Furthermore, the longer a participant looked at the goal prior to kick was found to directly associate with distance from the center. CONCLUSION: With accuracy being defined as in the goal but away from center, our results suggest that the longer a participant spent looking at the ball, the less accurate their kicks. Additionally, the more time an athlete spent looking in the direction of the goal, their accuracy increased. This provides partial support for our hypothesis and suggests that focusing on a target, as opposed to ball, prior to kick led to greater accuracy for our participants. Given participants were skilled soccer players (mean years played = 10.9; SD = 4.2), future studies could examine if this pattern is consistent among novice players
Environmental and genetic factors associated with Solanesol accumulation in potato leaves
Solanesol is a high value 45-carbon, unsaturated, all-trans-nonaprenol isoprenoid. Recently solanesol has received particular attention because of its utility, both in its own right and as a precursor in the production of numerous compounds used in the treatment of disease states. Solanesol is found mainly in solanaceous crops such as potato, tomato, tobacco and pepper where it accumulates in the foliage. There is considerable potential to explore the extraction of solanesol from these sources as a valuable co-product. In this study we have characterised the genetic variation in leaf solanesol content in a biparental, segregating diploid potato population. We demonstrate that potato leaf solanesol content is genetically controlled and identify several quantitative trait loci associated with leaf solanesol content. Transient over-expression of genes from the methylerythritol 4-phosphate (MEP) and mevalonic acid (MVA) pathways, either singly or in combination, resulted in enhanced accumulation of solanesol in leaves of Nicotiana benthamiana, providing insights for genetically engineering the pathway. We also demonstrate that in potato, leaf solanesol content is enhanced by up to six-fold on exposure to moderately elevated temperature and show corresponding changes in expression patterns of MEP and MVA genes. Our combined approaches offer new insights into solanesol accumulation and strategies for developing a bio-refinery approach to potato production
Killing spinor initial data sets
A 3+1 decomposition of the twistor and valence-2 Killing spinor equation is
made using the space spinor formalism. Conditions on initial data sets for the
Einstein vacuum equations are given so that their developments contain
solutions to the twistor and/or Killing equations. These lead to the notions of
twistor and Killing spinor initial data. These notions are used to obtain a
characterisation of initial data sets whose development are of Petrov type N or
D.Comment: 31 pages, submitted to J. Geom. Phy
Passive tracer in a flow corresponding to a two dimensional stochastic Navier Stokes equations
In this paper we prove the law of large numbers and central limit theorem for
trajectories of a particle carried by a two dimensional Eulerian velocity
field. The field is given by a solution of a stochastic Navier--Stokes system
with a non-degenerate noise. The spectral gap property, with respect to
Wasserstein metric, for such a system has been shown in [9]. In the present
paper we show that a similar property holds for the environment process
corresponding to the Lagrangian observations of the velocity. In consequence we
conclude the law of large numbers and the central limit theorem for the tracer.
The proof of the central limit theorem relies on the martingale approximation
of the trajectory process
Temperature dependence of the spin and orbital magnetization density in around the spin-orbital compensation point
Non-resonant ferromagnetic x-ray diffraction has been used to separate the
spin and orbital contribution to the magnetization density of the proposed
zero-moment ferromagnet . The alignment of the
spin and orbital moments relative to the net magnetization shows a sign
reversal at 84K, the compensation temperature. Below this temperature the
orbital moment is larger than the spin moment, and vice versa above it. This
result implies that the compensation mechanism is driven by the different
temperature dependencies of the spin and orbital moments. Specific heat
data indicate that the system remains ferromagnetically ordered throughout
Mechanism of Vanadium Leaching during Surface Weathering of Basic Oxygen Furnace Steel Slag Blocks: A Microfocus X-ray Absorption Spectroscopy and Electron Microscopy Study
© 2017 American Chemical Society. Basic oxygen furnace (BOF) steelmaking slag is enriched in potentially toxic V which may become mobilized in high pH leachate during weathering. BOF slag was weathered under aerated and air-excluded conditions for 6 months prior to SEM/EDS and μXANES analysis to determine V host phases and speciation in both primary and secondary phases. Leached blocks show development of an altered region in which free lime and dicalcium silicate phases were absent and Ca-Si-H was precipitated (CaCO 3 was also present under aerated conditions). μXANES analyses show that V was released to solution as V(V) during dicalcium silicate dissolution and some V was incorporated into neo-formed Ca-Si-H. Higher V concentrations were observed in leachate under aerated conditions than in the air-excluded leaching experiment. Aqueous V concentrations were controlled by Ca 3 (VO 4 ) 2 solubility, which demonstrate an inverse relationship between Ca and V concentrations. Under air-excluded conditions Ca concentrations were controlled by dicalcium silicate dissolution and Ca-Si-H precipitation, leading to relatively high Ca and correspondingly low V concentrations. Formation of CaCO 3 under aerated conditions provided a sink for aqueous Ca, allowing higher V concentrations limited by kinetic dissolution rates of dicalcium silicate. Thus, V release may be slowed by the precipitation of secondary phases in the altered region, improving the prospects for slag reuse
Water at an electrochemical interface - a simulation study
The results of molecular dynamics simulations of the properties of water in
an aqueous ionic solution close to an interface with a model metallic electrode
are described. In the simulations the electrode behaves as an ideally
polarizable hydrophilic metal, supporting image charge interactions with
charged species, and it is maintained at a constant electrical potential with
respect to the solution so that the model is a textbook representation of an
electrochemical interface through which no current is passing. We show how
water is strongly attracted to and ordered at the electrode surface. This
ordering is different to the structure that might be imagined from continuum
models of electrode interfaces. Further, this ordering significantly affects
the probability of ions reaching the surface. We describe the concomitant
motion and configurations of the water and ions as functions of the electrode
potential, and we analyze the length scales over which ionic atmospheres
fluctuate. The statistics of these fluctuations depend upon surface structure
and ionic strength. The fluctuations are large, sufficiently so that the mean
ionic atmosphere is a poor descriptor of the aqueous environment near a metal
surface. The importance of this finding for a description of electrochemical
reactions is examined by calculating, directly from the simulation, Marcus free
energy profiles for transfer of charge between the electrode and a redox
species in the solution and comparing the results with the predictions of
continuum theories. Significant departures from the electrochemical textbook
descriptions of the phenomenon are found and their physical origins are
characterized from the atomistic perspective of the simulations.Comment: 29 pages, 15 figure
- …