931 research outputs found
Recommended from our members
Learning to Act with RVRL Agents
The use of reinforcement learning to guide action selection of cognitive agents has been shown to be a powerful technique for stochastic environments. Standard Reinforcement learning techniques used to provide decision theoretic policies rely, however, on explicit state-based computations of value for each state-action pair. This requires the computation of a number of values exponential to the number of state variables and actions in the system. This research extends existing work with an acquired probabilistic rule representation of an agent environment by developing an algorithm to apply reinforcement learning to values attached to the rules themselves. Structure captured by the rules is then used to learn a policy directly. The resulting value attached to each rule represents the utility of taking an action if the conditions of the rule are present in the agent’s current set of percepts. This has several advantages for planning purposes: generalization over many states and over unseen states; effective decisions can therefore be made with less training data than state based modelling systems (e.g. Dyna Q-Learning); and the problem of computation in an exponential state-action space is alleviated. The results of application of this algorithm to rules in a specific environment are presented, with comparison to standard reinforcement learning policies developed from related work
Gate Coupling to Nanoscale Electronics
The realization of single-molecule electronic devices, in which a
nanometer-scale molecule is connected to macroscopic leads, requires the
reproducible production of highly ordered nanoscale gaps in which a molecule of
interest is electrostatically coupled to nearby gate electrodes. Understanding
how the molecule-gate coupling depends on key parameters is crucial for the
development of high-performance devices. Here we directly address this,
presenting two- and three-dimensional finite-element electrostatic simulations
of the electrode geometries formed using emerging fabrication techniques. We
quantify the gate coupling intrinsic to these devices, exploring the roles of
parameters believed to be relevant to such devices. These include the thickness
and nature of the dielectric used, and the gate screening due to different
device geometries. On the single-molecule (~1nm) scale, we find that device
geometry plays a greater role in the gate coupling than the dielectric constant
or the thickness of the insulator. Compared to the typical uniform nanogap
electrode geometry envisioned, we find that non-uniform tapered electrodes
yield a significant three orders of magnitude improvement in gate coupling. We
also find that in the tapered geometry the polarizability of a molecular
channel works to enhance the gate coupling
Gate Stack Dielectric Degradation of Rare-Earth Oxides Grown on High Mobility Ge Substrates
We report on the dielectric degradation of Rare-Earth Oxides (REOs), when
used as interfacial buffer layers together with HfO2 high-k films (REOs/HfO2)
on high mobility Ge substrates. Metal-Oxide-Semiconductor (MOS) devices with
these stacks,show dissimilar charge trapping phenomena under varying levels of
Constant- Voltage-Stress (CVS) conditions, which also influences the measured
densities of the interface (Nit) and border (NBT) traps. In the present study
we also report on C-Vg hysteresis curves related to Nit and NBT. We also
propose a new model based on Maxwell-Wagner instabilities mechanism that
explains the dielectric degradations (current decay transient behavior) of the
gate stack devices grown on high mobility substrates under CVS bias from low to
higher fields, and which is unlike to those used for other MOS devices.
Finally, the time dependent degradation of the corresponding devices revealed
an initial current decay due to relaxation, followed by charge trapping and
generation of stress-induced leakage which eventually lead to hard breakdown
after long CVS stressing.Comment: 19pages (double space), 7 figures, original research article,
Submitted to JAP (AIP
Recommended from our members
Competence Checking for the Global E-Service Society Using Games
We study the problem of checking the competence of communicative agents operating in a global society in order to receive and offer electronic services. Such a society will be composed of local sub-societies that will often be semi-open, viz., entrance of agents in a semi-open society is conditional to specific admission criteria. Assuming that a candidate agent provides an abstract description of their communicative skills, we present a test that a controller agent could perform in order to decide if a candidate agent should be admitted. We formulate this test by revisiting an existing knowledge representation framework based on games specified as extended logic programs. The resulting framework finds useful application in complex and inter-operable web-services construed as semi-open societies in support of the global vision known as the Semantic Web
Sharp Trace Hardy-Sobolev-Maz'ya Inequalities and the Fractional Laplacian
In this work we establish trace Hardy and trace Hardy-Sobolev-Maz'ya
inequalities with best Hardy constants, for domains satisfying suitable
geometric assumptions such as mean convexity or convexity. We then use them to
produce fractional Hardy-Sobolev-Maz'ya inequalities with best Hardy constants
for various fractional Laplacians. In the case where the domain is the half
space our results cover the full range of the exponent of the
fractional Laplacians. We answer in particular an open problem raised by Frank
and Seiringer \cite{FS}.Comment: 42 page
Sharp two-sided heat kernel estimates for critical Schr\"odinger operators on bounded domains
On a smooth bounded domain \Omega \subset R^N we consider the Schr\"odinger
operators -\Delta -V, with V being either the critical borderline potential
V(x)=(N-2)^2/4 |x|^{-2} or V(x)=(1/4) dist (x,\partial\Omega)^{-2}, under
Dirichlet boundary conditions. In this work we obtain sharp two-sided estimates
on the corresponding heat kernels. To this end we transform the Scr\"odinger
operators into suitable degenerate operators, for which we prove a new
parabolic Harnack inequality up to the boundary. To derive the Harnack
inequality we have established a serier of new inequalities such as improved
Hardy, logarithmic Hardy Sobolev, Hardy-Moser and weighted Poincar\'e. As a
byproduct of our technique we are able to answer positively to a conjecture of
E.B.Davies.Comment: 40 page
The Geometry of D=11 Killing Spinors
We propose a way to classify all supersymmetric configurations of D=11
supergravity using the G-structures defined by the Killing spinors. We show
that the most general bosonic geometries admitting a Killing spinor have at
least a local SU(5) or an (Spin(7)\ltimes R^8)x R structure, depending on
whether the Killing vector constructed from the Killing spinor is timelike or
null, respectively. In the former case we determine what kind of local SU(5)
structure is present and show that almost all of the form of the geometry is
determined by the structure. We also deduce what further conditions must be
imposed in order that the equations of motion are satisfied. We illustrate the
formalism with some known solutions and also present some new solutions
including a rotating generalisation of the resolved membrane solutions and
generalisations of the recently constructed D=11 Godel solution.Comment: 36 pages. Typos corrected and discussion on G-structures improved.
Final version to appear in JHE
Historical inductions, Old and New
I review prominent historical arguments against scientific realism to indicate how they display a systematic overshooting in the conclusions drawn from the historical evidence. The root of the overshooting can be located in some critical, undue presuppositions regarding realism. I will highlight these presuppositions in connection with both Laudan’s ‘Old induction’ and Stanford’s New induction, and then delineate a minimal realist view that does without the problematic presuppositions
Is there a role for dual PI3K/mTOR inhibitors for patients affected with lymphoma?
The activation of the PI3K/AKT/mTOR pathway is a main driver of cell growth, proliferation, survival, and chemoresistance of cancer cells, and, for this reason, represents an attractive target for developing targeted anti-cancer drugs. There are plenty of preclinical data sustaining the anti-tumor activity of dual PI3K/mTOR inhibitors as single agents and in combination in lymphomas. Clinical responses, including complete remissions (especially in follicular lymphoma patients), are also observed in the very few clinical studies performed in patients that are affected by relapsed/refractory lymphomas or chronic lymphocytic leukemia. In this review, we summarize the literature on dual PI3K/mTOR inhibitors focusing on the lymphoma setting, presenting both the three compounds still in clinical development and those with a clinical program stopped or put on hold
- …
