931 research outputs found

    Gate Coupling to Nanoscale Electronics

    Full text link
    The realization of single-molecule electronic devices, in which a nanometer-scale molecule is connected to macroscopic leads, requires the reproducible production of highly ordered nanoscale gaps in which a molecule of interest is electrostatically coupled to nearby gate electrodes. Understanding how the molecule-gate coupling depends on key parameters is crucial for the development of high-performance devices. Here we directly address this, presenting two- and three-dimensional finite-element electrostatic simulations of the electrode geometries formed using emerging fabrication techniques. We quantify the gate coupling intrinsic to these devices, exploring the roles of parameters believed to be relevant to such devices. These include the thickness and nature of the dielectric used, and the gate screening due to different device geometries. On the single-molecule (~1nm) scale, we find that device geometry plays a greater role in the gate coupling than the dielectric constant or the thickness of the insulator. Compared to the typical uniform nanogap electrode geometry envisioned, we find that non-uniform tapered electrodes yield a significant three orders of magnitude improvement in gate coupling. We also find that in the tapered geometry the polarizability of a molecular channel works to enhance the gate coupling

    Gate Stack Dielectric Degradation of Rare-Earth Oxides Grown on High Mobility Ge Substrates

    Full text link
    We report on the dielectric degradation of Rare-Earth Oxides (REOs), when used as interfacial buffer layers together with HfO2 high-k films (REOs/HfO2) on high mobility Ge substrates. Metal-Oxide-Semiconductor (MOS) devices with these stacks,show dissimilar charge trapping phenomena under varying levels of Constant- Voltage-Stress (CVS) conditions, which also influences the measured densities of the interface (Nit) and border (NBT) traps. In the present study we also report on C-Vg hysteresis curves related to Nit and NBT. We also propose a new model based on Maxwell-Wagner instabilities mechanism that explains the dielectric degradations (current decay transient behavior) of the gate stack devices grown on high mobility substrates under CVS bias from low to higher fields, and which is unlike to those used for other MOS devices. Finally, the time dependent degradation of the corresponding devices revealed an initial current decay due to relaxation, followed by charge trapping and generation of stress-induced leakage which eventually lead to hard breakdown after long CVS stressing.Comment: 19pages (double space), 7 figures, original research article, Submitted to JAP (AIP

    Sharp Trace Hardy-Sobolev-Maz'ya Inequalities and the Fractional Laplacian

    Get PDF
    In this work we establish trace Hardy and trace Hardy-Sobolev-Maz'ya inequalities with best Hardy constants, for domains satisfying suitable geometric assumptions such as mean convexity or convexity. We then use them to produce fractional Hardy-Sobolev-Maz'ya inequalities with best Hardy constants for various fractional Laplacians. In the case where the domain is the half space our results cover the full range of the exponent s(0,1)s \in (0,1) of the fractional Laplacians. We answer in particular an open problem raised by Frank and Seiringer \cite{FS}.Comment: 42 page

    Sharp two-sided heat kernel estimates for critical Schr\"odinger operators on bounded domains

    Full text link
    On a smooth bounded domain \Omega \subset R^N we consider the Schr\"odinger operators -\Delta -V, with V being either the critical borderline potential V(x)=(N-2)^2/4 |x|^{-2} or V(x)=(1/4) dist (x,\partial\Omega)^{-2}, under Dirichlet boundary conditions. In this work we obtain sharp two-sided estimates on the corresponding heat kernels. To this end we transform the Scr\"odinger operators into suitable degenerate operators, for which we prove a new parabolic Harnack inequality up to the boundary. To derive the Harnack inequality we have established a serier of new inequalities such as improved Hardy, logarithmic Hardy Sobolev, Hardy-Moser and weighted Poincar\'e. As a byproduct of our technique we are able to answer positively to a conjecture of E.B.Davies.Comment: 40 page

    The Geometry of D=11 Killing Spinors

    Get PDF
    We propose a way to classify all supersymmetric configurations of D=11 supergravity using the G-structures defined by the Killing spinors. We show that the most general bosonic geometries admitting a Killing spinor have at least a local SU(5) or an (Spin(7)\ltimes R^8)x R structure, depending on whether the Killing vector constructed from the Killing spinor is timelike or null, respectively. In the former case we determine what kind of local SU(5) structure is present and show that almost all of the form of the geometry is determined by the structure. We also deduce what further conditions must be imposed in order that the equations of motion are satisfied. We illustrate the formalism with some known solutions and also present some new solutions including a rotating generalisation of the resolved membrane solutions and generalisations of the recently constructed D=11 Godel solution.Comment: 36 pages. Typos corrected and discussion on G-structures improved. Final version to appear in JHE

    Historical inductions, Old and New

    Get PDF
    I review prominent historical arguments against scientific realism to indicate how they display a systematic overshooting in the conclusions drawn from the historical evidence. The root of the overshooting can be located in some critical, undue presuppositions regarding realism. I will highlight these presuppositions in connection with both Laudan’s ‘Old induction’ and Stanford’s New induction, and then delineate a minimal realist view that does without the problematic presuppositions

    Is there a role for dual PI3K/mTOR inhibitors for patients affected with lymphoma?

    Get PDF
    The activation of the PI3K/AKT/mTOR pathway is a main driver of cell growth, proliferation, survival, and chemoresistance of cancer cells, and, for this reason, represents an attractive target for developing targeted anti-cancer drugs. There are plenty of preclinical data sustaining the anti-tumor activity of dual PI3K/mTOR inhibitors as single agents and in combination in lymphomas. Clinical responses, including complete remissions (especially in follicular lymphoma patients), are also observed in the very few clinical studies performed in patients that are affected by relapsed/refractory lymphomas or chronic lymphocytic leukemia. In this review, we summarize the literature on dual PI3K/mTOR inhibitors focusing on the lymphoma setting, presenting both the three compounds still in clinical development and those with a clinical program stopped or put on hold
    corecore