
Child, C. H. T., Stathis, K. & Garcez, A. d'Avila (2007). Learning to Act with RVRL Agents. Paper

presented at the 14th RCRA Workshop, Experimental Evaluation of Algorithms for Solving Problems

with Combinatorial Explosion, Jul 2007, Rome, Italy.

City Research Online

Original citation: Child, C. H. T., Stathis, K. & Garcez, A. d'Avila (2007). Learning to Act with RVRL

Agents. Paper presented at the 14th RCRA Workshop, Experimental Evaluation of Algorithms for

Solving Problems with Combinatorial Explosion, Jul 2007, Rome, Italy.

Permanent City Research Online URL: http://openaccess.city.ac.uk/2999/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised to

check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/18436247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Learning to Act with RVRL Agents

Chris Child
& Artur S. d'Avila Garcez

School of Informatics,

The City University,

London EC1V 0HB, UK

c.child@city.ac.uk

aag@soi.city.ac.uk

Kostas Stathis

Department of Computer Science,

Royal Holloway, University of London,
Egham TW20 0EX, UK

kostas.stathis@rhul.ac.uk

ABSTRACT
The use of reinforcement learning to guide action selection

of cognitive agents has been shown to be a powerful

technique for stochastic environments. Standard

Reinforcement learning techniques used to provide decision

theoretic policies rely, however, on explicit state-based

computations of value for each state-action pair. This

requires the computation of a number of values exponential

to the number of state variables and actions in the system.

This research extends existing work with an acquired

probabilistic rule representation of an agent environment by

developing an algorithm to apply reinforcement learning to

values attached to the rules themselves. Structure captured

by the rules is then used to learn a policy directly. The

resulting value attached to each rule represents the utility of

taking an action if the conditions of the rule are present in

the agent’s current set of percepts. This has several

advantages for planning purposes: generalization over many

states and over unseen states; effective decisions can

therefore be made with less training data than state based

modelling systems (e.g. Dyna Q-Learning); and the problem

of computation in an exponential state-action space is

alleviated. The results of application of this algorithm to

rules in a specific environment are presented, with

comparison to standard reinforcement learning policies

developed from related work.

Keywords

Reinforcement learning, perception, action, planning,

situated agents, stochastic, environment, logic,

algorithms.

1. INTRODUCTION
Rule Value Reinforcement Learning (RVRL) is a new

reinforcement learning method, based on dynamic

programming [12], which refines values attached to a

set of acquired stochastic planning operators to

produce utilities which can be used for action

selection in situated agents.

The development of situated agents for stochastic

environments presents many challenges to designers

of multi-agent systems. If the agent is to use a state-

based representation, in which every state it

encounters is labelled depending on the value of state

variables, the number of states is exponential to the

number of state variables. This problem is further

compounded by the state transition model in a

stochastic environment, in which each action can lead

to one of many next states. An alternative approach is

to use a factored state model [1]. Although this

method reduces the problem of having to store and

calculate an exponential number of values, designers

are often unable to provide a complete model of the

environment from this perspective, and, if a model is

available, classical algorithms for reinforcement

learning require every state to be labelled with a value

and the exponential state problem reappears.

RVRL builds on the probabilistic rule-based factored

state-model of stochastic environments presented in

[4], by developing an algorithm to apply

reinforcement learning to values attached to the rules

themselves. Structure captured by the rules is,

therefore, used to learn a policy directly. The

resulting value attached to each rule represents the

utility of taking an action if the conditions of the rule

are present in the agent’s current set of percepts.

We are motivated by probabilistic environments of

the kind one finds in computer game applications,

whereby player agents need to rely on learning by

assuming some background knowledge rather than by

being programmed from scratch for all eventualities

in the game. For this class of applications our

intuition is that a rule-based representation which

describes the dynamics of a probabilistic environment

can also be used as a method of compactly describing

the effectiveness of taking various actions in that

environment. In this context, the main contribution of

this work is to demonstrate that a rule-based

representation can provide an effective platform for

state-based aggregation. Using an adaptation of

Watkins Q-Learning [14] to regress value through the

rules, an effective policy can be learned.

This paper is the full version of the work presented in

[3] and it is structured as follows. In section 2 we

provide the background of the work on environment

modelling using stochastic planning operators and we

present existing techniques for generating next states

with the operators given a current state and action.

These techniques form a key step for RVRL, which is

presented in section 3, with emphasis on the iterative

rule value update function and an effective algorithm

for performing these updates. Section 4 details

experiments with RVRL in a predator-prey

environment, where we compare our results to Dyna-

Q learning [12] and a model based method.

Concluding remarks and related work are presented in

section 5.

2. BACKGROUND
The overall aim of our research is to build agents that

can learn to act autonomously in a stochastic

environment through experience gathered from

interaction with the environment. Acquired stochastic

logic rules are used to provide a compact model of the

effects of agent action in the environment, and

reinforcement learning techniques are used to plan

within that model. RVRL provides a method for

planning and action within this context.

The following sections detail:

• The agent and its environment modelling

process.

• Modelling an environment using stochastic

planning operators.

• Acquisition of stochastic planning operators

from experience.

2.1 Agents and Environments
An agent is regarded as a decision maker and the

environment is everything outside of the direct

control of the agent.

• Agent: decision-maker.

• Environment: everything it interacts with

(outside the agent).

The agent and environment interact continuously. The

agent selects actions and the environment responds to

these selections. The agent takes an action, which

sends a message to the agent body [11]. The agent

body is an environment object, which is updated by

the environment (Figure 2-1). All objects in the

environment are continuously updated, irrespective of

whether or not they are under an agent’s control. The

agent itself can be thought of as the mind of the body;

assuming the necessary interfaces between the agent

and its body, this mind could be thought of as

operating outside the environment. The environment

can proceed without intervention from the agent, with

the environment acting as an external control

mechanism. The agent body would, of course, be

inactive without the agent’s selection of actions, but

its state can still be changed by the environment.

Environment

Agent Body

Agent
Sensors

Effectors

Body

State Update

Environment

Modeller

Policy

Generator
Action

Percept

Environment

Object

(Environment Object)

.
Figure 2-1: An agent and its environment. The agent in this

instance makes decisions by building a world model through

interaction with the environment.

The agent is cognitive in that it builds a model of its

environment from experience through its percepts to

anticipate and plan actions for the future. It receives a

percept from the agent body, responds with an action

and then continues by processing another percept. In

other words, percepts create a history which is used to

build a policy of the actions taken by the agent and a

model of the reaction of the environment to the

actions generated by that policy.

2.2 Modelling an Environment with

Stochastic Planning Operators
There are several different ways of modelling an

environment. One of the most basic ones is to label

each state as it is perceived and build a map of the

state following after each action. If the environment is

stochastic there may be several following states with

a probability of reaching each one. This is the method

used by Dyna-Q, described in [12].

A simple example will help illustrate these concepts.

Consider an agent with two possible actions. It can

“flip a coin” or “do nothing”. Its environment consists

of the coin, showing either heads or tails. The agent’s

preferred state is that the coin is showing heads

(Figure 2-2).

The coin example shows a model of a simple

environment with two states (heads, tails). This form

of model is relatively easy for an agent to build from

empirical evidence. It builds a list of all the states in

has observed and the actions it took in each state. It

then records the state it observes subsequently.

Heads Tails

Do nothing Do nothing
Flip coin

Flip coin

Figure 2-2: States and actions for a coin flipping agent. States

are represented by ovals and actions by arrows. Arrows lead

from the start state to the end state for a particular action

labelled with a probability.

The number of times the next state occurred for each

state-action pair, divided by the total number of

occurrences of the state action pair gives the

empirical probability. Table 1 gives an example of an

agent’s representation of a world model built in this

way:

Table 1: Building a world model by labelling states using

empirical evidence

State Action Next State Obs. Empirical Probability

Heads None Heads 2104 2104/2104 = 1.0

Heads 1024 1024/(1024+976)=.512
Heads Flip

Tails 976 976/(1024+976)= .488

Tails None Tails 1978 1978/1978 = 1.0

Heads 995 995/(995+1002)= .498
Tails Flip

Tails 1002 1002/(995+1002)=.502

2.3 Using Rules as a Model
If the environment the agent is modelling can be

described in terms of a set of state variables, a

factored state-model can be used. This describes the

environment in terms of the dependencies between

state variables and the evolution of these variables

with respect to the actions taken by an agent.

The method used in this research is to create planning

operators from experience of interactions with the

environment. These are rules which predict how the

environment will change when the agent takes an

action (or no action).

In this context, an agent is assumed to have a set of n

possible actions, A = {a1, …, an} and can perceive m

possible state variables S = {s1, … sm}, each of which

can take on a finite set of possible values. Let si =

{vi1, …, vik} be the values associated with the i
th

variable.

The general form of a stochastic planning operator is:

P: e � a, c

P is the probability that the effects (e) of this operator

will become true given the conditions (a, c) of the

operator hold. a is an action from the set A, and c is a

set of state variables from S representing the context

of the agent’s perception of the environment for the

operator. Both a and c may be empty. In order to

restrict the number of possible operators, e is defined

to be a single variable for each operator, again taken

from the set S. A combination of single variable

operators is used to generate the next percept.

As an example, consider an agent with two possible

actions. It can “flip a coin” or “do nothing”. Its

environment consists of the coin, showing either

heads or tails. The agent’s preferred state is that the

coin is showing heads. An example rule for the coin

flipping agent would be:

0.5: Heads � Flip

This reads: the coin side will be Heads with

probability 0.5 if the action was Flip. Notice that

the previous coin side is not relevant if the Flip

action is taken by the agent. Using a rule-based model

allows the agent to build a more accurate model by

removing irrelevant details. The agent can thus

combine the following two rules:

0.5: Heads � Flip, Heads

0.5: Heads � Flip, Tails

The single rule with the probability has the advantage

of (a) combining all relevant collected evidence for

the result of the action and (b) saving space in storing

the model because the agent requires fewer rules.

2.4 Learning Stochastic Planning Operators

from Experience
The process of building a rule set from experience

requires the identification of conditions relevant to

the effects of a rule. In the case of the coin flipping

agent, the previous coin side is not relevant if the

agent chooses the flip coin action, but is relevant if

the agent chooses not to act.

An effective method of building planning operators

from experience is to use statistical significance to

identify whether additional conditions are relevant to

the outcome. This is the method used by MSDD [9],

and ASDD [4].

The ASDD rule learner is used in this research to

create rule sets. ILP has also been used to learn rules

of this form (see [10][1]).

2.5 Building Successor States with Stochastic

Planning Operators
The ASDD algorithm generates a set of planning

operators with only one effect in order to reduce

substantially the final number of rules. Successor

states are generated using these rules as follows:

1. Find all rules matching the current state and

selected action.

2. Remove rules that defer to other matching rules.

For each rule in the rule set from step 1, remove it

if another rule has precedence over it.

3. Generate possible states and probabilities (section

2.5.1).

4. Remove impossible states using constraints and

normalise the state probabilities.

A rule has precedence over another rule if it is a more

accurate predictor of the effect in situations where

both rules are applicable.

2.5.1 Generate Possible States

The possible states are generated using stochastic

planning operators as follows:

1. Create a new state from each combination of

effect values in the rules remaining after steps 1

and 2 above.

2. Multiply the probability of each effect rule to

generate the probability of each state.

In order to demonstrate this process, we introduce to

the predator-prey scenario (section 2.5.2). This

scenario is also used in the experiments (section 4).

2.5.2 The Predator Prey Environment

The environment consists of a 4x4 grid surrounded by

a “wall”. There is one predator and one prey. The

predator will be assumed to have caught the prey if

the prey lands on the same square as the predator at

the end of its move. The prey selects a random action

at each move. Both predator and prey have four

actions: move north, east, south and west. An action

has the effect of moving the agent one square in the

selected direction, unless there is a wall, in which

instance there is no effect. The predator and prey

move alternate turns. The agent’s percept gives the

contents of the four squares around it and the square

under it. Each square can be in one of three states:

empty, wall or agent. For example a predator agent

which has a wall to the west and a prey to the east

would have the percept {Empty_N, Agent_E,

Empty_S, Wall_W, Empty_U} corresponding to

the squares to the north, east, south, west and under

respectively (Figure 2-3).

Figure 2-3: Predator and prey in a 4x4 grid. P=predator;

A=prey agent. P’s percept is shown to the right.

In the predator prey domain:

A = {Move_N, Move_E, Move_S, Move_W}

P = {N, E, S, W, U}

P
N
 = {Empty_N, Wall_N, Agent_N}

P
E
, P

S
, P

W
, P

U
 follow the same form as P

N

Where A indicates available actions, P the possible

percepts in each direction and PN, PE, PS, PW, PU the

percept values in each direction.

2.5.3 Successor State Generation Example

A set of rules can be generated using ASDD the full

details of which have been presented in [4].

After steps 1 and 2 from section 2.5, we are left with

the rules in Table 2 for the initial percept {Wall_N,

Empty_E, Empty_S, Agent_W, Empty_U} and

action Move_N.

The states generated from the rules in Table 2 are

shown in Table 2. The probabilities for each state are

generated by multiplying the probabilities of each

rule that generated the state. The final state in italics

contains two agents, and would therefore be removed

as an impossible state (step 4 in section 2.5) and the

probabilities of remaining states normalised. For

details of this process the reader is referred to [4].

Table 2: Rules generated by the ASDD algorithm for the

predator prey scenario matching an initial percept Wall_N,
Empty_E, Empty_S, Agent_W, Empty_U and action

Move_N, after removal of rules by precedence.

Effect Conditions

1.00: Wall_N Move_N, Wall_N

1.00: Empty_E Move_N, Empty_E, Agent_W

1.00: Empty_S Move_N, Wall_N, Agent_W

0.59: Empty_W

0.41: Agent_W

Move_N, Empty_E, Agent_W

0.63: Empty_U

0.37: Agent_U

Move_N, Wall_N, Agent_W

Table 3: Generated states and associated probabilities from

the rules in Table 2.

Wall_N Empty_E Empty_S Empty_W Empty_U 0.37

Wall_N Empty_E Empty_S Empty_W Agent_U 0.22

Wall_N Empty_E Empty_S Agent_W Empty_U 0.25

Wall_N Empty_E Empty_S Agent_W Agent_U 0.15

2.5.4 Precedence

Precedence (or deferral) between rules is required in

situations where two or more rule-sets match the

conditions for the same output variable. The state

generator picks the rule-set which best matches the

original data gathered from experience for the

combined conditions. Table 4 and Table 5 show rules

which both apply to the square to the north of the

agent. In order to establish precedence in situations

where both rule-sets conditions hold, the rule-set

which best describes a rule with the combined

conditions (Table 6) is preferred. In this example, we

can see that the combined rule-set does not contain an

agent to the north, so the set in Table 5 would be

preferred.

In this case the rules in Table 5 state that we will not

see an agent to the north if we move north and

previously observed an agent to the south. This is

correct because there is only one agent in the

environment and it could not have moved to the north

if it was previously observed to the south.

Table 4: Rule set with conditions: action = Move_N and percept

contains Empty_N

Effect Conditions

0.6: Empty_N Move_N, Empty_N

0.1: Agent_N Move_N, Empty_N

0.3: Wall_N Move_N, Empty_N

Table 5: Rule set with conditions: action = Move_N and percept

contains Agent_S

Effect Conditions

0.7: Empty_N Move_N, Agent_S

0.3: Wall_N Move_N, Agent_S

Table 6: Rule set with combined conditions

Effect Conditions

0.75:Empty_N Move_N, Empty_N, Agent_S

0.00:Agent_N Move_N, Empty_N, Agent_S

0.25:Wall_N Move_N, Empty_N, Agent_S

3. RULE VALUE REINFORCEMENT

LEARNING
Section 2 described the use of rules to model an

environment. The next task for the agent is to use this

rule model to develop an effective policy for action in

the environment. One method of achieving this is to

use a standard reinforcement learning technique such

as Watkins Q-Learning [14].

Reinforcement learning techniques feed back rewards

(or costs) encountered in each state to the state which

led to the reward. In Q-learning, each state-action pair

is given a value, which represents the utility of taking

the action in the state. If an agent has an accurate

state-action map, it can then take the optimal action

by choosing the highest valued action for that state.

The update function for Q-learning is as follows:

'
'

(,) (,) [max (', ') (,)]
s

a

Q s a Q s a R Q s a Q s aα γ← + + −

(3.1)

Where s and a are the states and actions. s’ is the

resulting state and a’ is the following action. Rs’ is

the reward received for the following state. Q(s,a)

indicates the current Q value for the state action pair.

This update rule gradually improves estimates on the

target function Q. The α parameter is a step-size,

indicating how quickly the new estimate should

change the old one. γ indicates the discount factor,

determining the influence of future rewards on the

current state.

If the agent continually follows an optimal policy

(picks the best action at each stage) with some error

introduced in order to allow it to explore, the Q-

learning algorithm will converge on an optimal policy

with a probability close to 1.0 [12]. If we use this

function and take sample results (i.e. s’ is taken to be

the random result after taking action a in state s) the

learning is one-step temporal difference (TD)

learning.

Table 8 gives example Q-Values after applying the

TD update function for the coin flipping agent with α

= 0.5, γ = 0.95 and rewards: {Heads = 1, Tails

= -1}. The values in column value (1) show the

values after the sequence of actions and results

below:

State: Heads, Action: Flip, Result: Heads
State: Heads, Action: None, Result: Heads

The values for the column value (2) show the values

after four further actions:

State: Heads, Action: Flip, Result: Tails
State: Tails, Action: None, Result: Tails
State: Tails, Action: Flip, Result: Heads
State: Tails, Action: Flip, Result: Tails

Table 7: Example Q-Values for the coin flipping agent (α=0.5,

γ = 0.95). Rewards: {Heads=1, Tails=-1}

State Action Value(1) Value(2)

Heads Flip 0.5 -0.0125

Tails Flip 0 0.329

Heads None 0.738 0.738

Tails None 0 -0.5

3.1 The Rule Value Update Function
The Rule Value Reinforcement Learning (RVRL)

method that we present in this work uses the same

principle as TD learning to update a value associated

with each rule, rather than each state. The main

advantages of using a state-based aggregation

method, such as RVRL, over a standard

reinforcement learning technique are that:

a) The agent does not have to store a complete

value-map with entries for every possible

state-action combination in the environment.

b) The agent can generalize over many states,

thus allowing one value to represent many

states with similar properties, and allowing a

sensible action to be taken in previously

unseen states.

The coin flipping example can be used to demonstrate

this technique. The conditions captured in our rule-set

for calculation of next state reflect structural

characteristics of the environment for calculation of a

value-map. The rule values can be updated using the

Q-learning equation, because there is only one output

variable in each rule. Table 8 shows Q(Rule)

approximations for the coin flipping example using

the sequence of actions and results used for

Table 7.

The value of the flip action will be the same, whether

the current state is Heads or Tails, and we can thus

update the table more accurately.

Table 8: Example Q(Rule) Values for the coin flipping agent

(α=0.5, γ = 0.95). Rewards: {Heads=1, Tails=-1}

Prob Effect Conditions Value(1) Value(2)

0.5 Heads

0.5 Tails

Flip 0.5 0.3231

1.0 Heads None,
Heads

0.738 0.738

1.0 Tails None,
Tails

0 -0.505

If a model of the environment is available, full

backup values can be used. Rather than taking a

random sample for s
t+1

, the probability (P) of

reaching each possible next state (s’) given that

action a was taken in state s can be used in the

equation, and the best next action taken as the

maximum action (a’) for each possible next state.

This is the principle behind dynamic programming

(DP). The update function for DP [12] is:

''
''

(,)

(,) [max (', ') (,)]
a

sss
as

Q s a

Q s a R Q s a Q s aP α γ

←

+ + −∑

(3.2)

The stochastic planning operators act as a model in

rule value reinforcement learning: it is therefore

possible to use an adaptation of the above equation.

The rule values for stochastic planning operators

cannot be updated directly using equation (3.2),

because more than one rule will match the next state

(s’) and would therefore be used to generate

consecutive states (see Table 2) due to several output

variables being present.

The rule learning function, therefore, replaces

Q(s’,a’) with an average value for all matching

rules which have precedence (and would therefore be

used in generation of the successor state). The rules

with precedence are used to give the most accurate

representation of the dynamics of the environment in

state s’.

Q(s,a) is replaced by the value of the rule which

will be updated. All matching rules are updated in

turn by the algorithm because their estimate of value

will be improved by the update, whether they have

precedence or not.

()()

''
'

'

,

() ()

[max ((', '))

()]

a

sss
a

s

forEach rule MatchingRules s a

Q rule Q rule

R AvgQ WinningRules s a

Q rule

P α γ

∈

← +

+

−

∑

(3.3)

AvgQ(WinningRules(s’,a’)) returns the average

rule value for rules which have precedence in state

s’ if action a’ is taken. Table 9 shows the winning

rules from Table 2 and the values that have been

learned for them after 15,000 iterations of the rule

update function. Notice that all rules with the same

condition have the same value.

Table 9: Rule Values for a set of Winning Rules

Effect Conditions Value

1.00: Wall_N Move_N, Wall_N -0.27

1.00: Empty_E Move_N, Empty_E,
Agent_W

-0.23

1.00: Empty_S Move_N, Wall_N,
Agent_W

0.43

0.59: Empty_W

0.41: Agent_W

Move_N, Empty_E,
Agent_W

-0.23

0.63: Empty_U

0.37: Agent_U

Move_N, Wall_N,
Agent_W

0.43

AvgQ(WinningRules(s’,a’)) finds the average

value of the winning rules and returns the value. The

average value of the rules in Table 9 is: (-0.27 -0.23

+0.43 -0.23 +0.43)/5 = 0.026.

MatchingRules(s,a) returns all rules whose

conditions match the current state and action. The

values of all the returned rules are updated by

equation (3.3).

3.2 Iterative Rule Value Evaluation
Section 2.5 described the process of building

successor states using stochastic planning operators

as a model. If this is combined with the rule-value

update function given in equation (3.3) it is possible

to continuously generate next states from an initial

state and update the rule values for those states until

satisfactory values for the rules have been generated

(or a number of updates, n, has been performed). This

process is described by the following algorithm:

Initialise Q(rule) = 0, for all rule ∈ rules;
Repeat {

 Initialise s = random state, a = random action;

 Generate next states, s’ and prob(s’) for s,a

 totalValue = 0; totalReward = 0;

 For each s’ ∈ successor states {
 totalReward += reward(s’) * prob(s’);

 maxActionValue = -∞;
 maxAction = null;

 For each a’ ∈ actions {
 actionValue = AvgQ(WinningRules(s’,a’));

 if (actionValue > maxActionValue)

 maxActionValue = actionValue;

 }

 totalValue += maxActionValue * prob(s’);

 }

 For each rules ∈ matchingRules(s,a)
 Q(rule) = Q(rule) +

 α[totalReward + γ*totalValue;
 –Q(rule)];

} for n steps

The sampling (TD learning) equivalent to this method

would take a sample next state s’ rather than

calculating the probability of each next state. The

process is otherwise the same.

A low α value should be used in order to allow the

rules to gradually approach the correct value, rather

than being influenced by rules which do not directly

correspond to reward states. In the predator prey

environment, for example, reward values are based on

whether the prey is the same square as the predator.

Other rules may fluctuate greatly in value.

4. EXPERIMENTATION
RVRL as described in the previous section was

applied to the predator-prey environment outlined in

section 2.5.2. The task for our learning algorithm is to

construct an effective policy under these conditions,

allowing the predator to catch the prey with optimal

frequency. The task is complicated by the fact that the

predator is only adjudged to have captured the prey if

the prey moves into, or remains in, the predator’s

square at the end of its turn. Therefore the predator

could not simply catch the prey by moving onto its

square each move. The task is continuous, rather than

episodic, meaning that the predator and prey will

continue to move after the prey is caught, rather than

re-starting each time.

In experiments using a state-action observation-based

model and using standard TD learning, it was found

that with a small amount of experience in the

environment, the predator will tend to move next to

the prey but not on-top of it. This is a reasonable

tactic as the prey is then likely to move onto the

predator and thus be caught. The optimal tactic,

however, gained from a very large observation set

(200,000 moves) was found to be one in which the

predator moves into the prey’s square every move.

This enables the predator to always be in sight of the

prey and catch it whenever the prey moves into a

wall. An example of a rule which captures this

behaviour is one with the conditions:

Agent_N, Move_N.

Our experiments showed that RVRL gives high value

to this rule and the Move_S, Move_E and Move_W

equivalents. Rules which attain higher value than this

are more effective and have conditions such as:

Agent_U, Move_N, Wall_N, Wall_E

This corresponds to the situation where the predator

is on-top of the prey in the NE corner of the map and

chooses to move into a wall to the north. This gives

the predator a 50% chance of catching the prey (the

prey moves randomly and will move into the wall to

the north or east 50% of the time). The “effects” of

the rules are not shown, because the same value will

be learned for all rules with the same conditions.

A sample of the final rule weights from rules learned

from 60,000 moves experience after RVRL was run

on the rule set for 15,000 iterations is given in Table

10.

Table 10: Sample rule weights for rules learned from 60,000

moves experience and 15,000 iterations of RVRL.

No. Conditions Value

1 Move_W, Wall_W, Wall_S, Agent_U 0.43

2 Move_E, Wall_W, Wall_S, Agent_U -0.03

3 Move_N, Wall_W, Agent_N 0.11

4 Move_N, Wall_N, Agent_U 0.11

5 Move_E, Agent_E -0.07

6 Move_W, Agent_E -0.21

7 Move_S -0.28

8 -0.28

Rules 1 and 2 have the same conditions, in that the

predator is in the south west corner of the grid, with

the prey underneath it. The rule has a positive value if

the predator moves into a wall (rule 1), and a negative

value if the predator moves away from the wall (rule

2). The agent would, therefore, pick the action of

moving into the wall and thus have the highest chance

of catching the prey (50% if the prey moves into a

wall on its move).

Rules 3 and 4 both have the same weight. If the

predator takes the move north action in rule 3, it will

be on-top of the prey and will therefore catch the prey

if it moves into the wall to the west, which will

happen 25% of the time. If the predator takes the

move north action in rule 4 it will move into the wall

and therefore stay on-top of the prey (which is under

it). The predator will then catch the prey if it moves

into the wall to the north, which will happen 25% of

the time. These two situations should be of equal

utility to the agent, which has been successfully

learned by RVRL.

Rules 5 and 6 show the weights for moving east onto

the prey to the east and moving west away from a

prey to the east respectively. Moving onto the prey

has a higher weight, and the predator will thus pick

this action.

Rules 7 and 8 have the same value. Rule 7 is the

general value of moving south with no other

information. Rule 8 has no conditions and is thus the

general value of taking a random move in the

environment. These rules have the same value, which

makes intuitive sense because moving south with no

information would effectively mean taking a random

move.

Tests were performed on the performance of Rule

Value Reinforcement learning with:

a) Dyna-Q: a reinforcement learner which builds a

frequency based model of the environment. Q-

Learning is used on the acquired model to build

values for each state action pair (the Q(s, a) map).

b) A stochastic rule based model of the environment

to build a state, action value map. This is the

equivalent of running Q-learning, using the rule

based model for experience to build the Q(s, a)

map. This method is described in [4].

Rule Value reinforcement learning builds a Q(rule)

map, assigning value to each rule. Table 11 gives a

comparison of the three methods.

In each test case the methods were given the same

experience with which to build the model. The

predator and prey were run for a set number of steps,

taking random moves at each step. Using the model,

each method ran Q-learning (in the first two cases), or

RVRL for 15,000 iterations in order to build a value

map. Once the map had been created, each method

ran for 40,000 steps in the predator prey environment,

selecting the action with the highest utility at each

step. The number of times the predator “caught” the

prey was then recorded. The average number of

moves taken to capture the agent is given in Table 11.

The two Q-learning based methods selected the best

action at each step picking the highest valued action

from all matching Q(s,a) values for the current state

(s).

Rule based reinforcement learning picked the highest

valued action from all matching:

 AvgQ(WinningRules(s,a))

This was achieved by taking each possible action in

turn and finding the value of:

AvgQ(WinningRules(s,a))

for the current state (s).

Table 11: Moves per capture for Dyna-Q, Stochastic Rule

model Q (SR-Q) and Rule Value Reinforcement Learning

(RVRL). Reinforcement learning ran for 15,000 iterations.

Trials ran for 40,000 steps. Training data gathered for

between 100 and 60,000 steps

Method 100 500 1000 10000 15000 30000 60000

Dyna-Q 17.5 16.4 12.0 8.8 7.4 6.2 4.6

SR-Q 13.1 13.4 11.5 9.2 8.8 7.1 4.7

RVRL 13.2 12.7 11.3 9.3 8.1 7.0 4.7

Moves per capture for the predator taking random

moves in the environment were found to be 16.01

(there are 16 squares is the environment and the

predator will be randomly in the same 1 in 16 moves.

A trail was also run on a “perfect” model (a Dyna-Q

model built from 400,000 moves). In this instance, the

predator took 4.32 moves to capture the prey.

The results in Table 11 for 100, 500 and 1000 moves

training data show that RVRL is more effective than

Dyna-Q when very little experience has been gathered

in the environment. In this case the Dyna-Q agent is

forced to take a random move in many of the states

encountered in the test, because it has no experience

which matches the situation. An environment in

which a random move was more costly would,

therefore, show the value of RVRL in a more

pronounced way under limited training data. With this

limited model the Dyna-Q system “expected” the prey

to move in the same way as it did in the training data,

which often meant it picked an action that performed

poorly. The RVRL agent, however, was able to make

generalisations in two ways: first to generalise a

model using the stochastic logic rules, which allows

the system to predict future states from the current

state, even when this state has not been seen before;

second, RVRL learned values are applicable across

multiple states, allowing learned values to be applied

in unseen states. This allows the small amount of

experience gathered to be generalised and used,

which is demonstrated by the improved performance

under these conditions. SR-Q is only able to make use

of the first of these generalisations, and therefore

performed slightly better than Dyna-Q, but not as well

as RVRL.

As the state action map gains a larger amount of

experience (10,000, 15,000 and 30,000 steps), its

model becomes closer to a perfect model in this test

environment, while the generalisations made by the

rule learner become less effective. This is due largely

to shortcomings in the ASDD modelling method with

this level of training data [4] which is reflected in the

similar performance of the SR-Q results. The similar

performance of SR-Q and RVRL shows that the

slightly lower performance is due to this modelling

inefficiency, rather than shortcomings in the RVRL

algorithm. The increased performance of RVRL over

SR-Q demonstrates that the ability of RVRL to

generalise helps overcome this shortcoming.

When the learned rules become a near perfect

representation of the environment (at 60,000 steps

training data), the results show that RVRL is capable

of learning near perfect valued rules, and thus the

utility of taking an action in the current state, again

demonstrating that the rule values are capable of

capturing a policy at least as effectively as a state

action model under these conditions.

5. CONCLUSIONS
This paper has presented the Rule Value

Reinforcement Learning (RVRL) method for agents

situated in stochastic environments. The method

builds upon earlier work on learning stochastic

planning operators, with emphasis on making these

techniques applicable in agent-based systems. Results

in our experimentation are extremely encouraging in

that the algorithm is able to learn rule-values which

accurately capture the utility of actions in the

predator-prey environment without the need for a

state-action map.

Techniques for reducing the need to store a number of

state-action values exponential to the number of

variables in the state fall into two main categories:

a) State-based aggregation;

b) Functional Approximation;

Techniques for reducing the need to store a number of

state-action values exponential to the number of state

variables in the state fall into two main categories:

state-based aggregation and functional approximation.

RVRL is a state-based aggregation technique, in that

states which behave in a similar way with respect to a

given action sequence and goal are given the same

value. This type of aggregation is captured within the

rule values in our technique. Other techniques in this

category include:

a) Decision Theoretic Regression [2]: a decision

tree representation of value is used,

associated with a Dynamic Bayesian Network

model of the environment. The method uses

structure in the reward function to build a

decision tree representation of the value-map

which identifies regions of the state-action

space whose values are the same. Regressions

are made through each action to provide

value trees for each available action.

b) Explanation based reinforcement learning [5]:

Uses actions represented by deterministic

STRIPS-like operators and has been extended

to stochastic actions. Unlike RVRL, the

technique does not allow for multiple

concurrent output variables and assumes a

single goal state rather than a general reward

function.

Functional approximation techniques seek to create a

compact approximation to the value function using,

for example, neural networks. This technique gained

prominence with TD-Gammon, which created a

championship winning backgammon program [13].

The technique uses an approximation, rather than

exploiting regions of uniform value in the feature

space. Full comparisons with these techniques,

however, are beyond the scope of this paper.

The use of acquired stochastic planning operators,

combined with RVRL, represent a promising

development in reinforcement learning. We plan to

perform further tests in order to evaluate the

performance of the method in a variety of

environments. Scenarios in which the state variables

are less tightly coupled are likely to show greater

benefits for the method, compared to Dyna-Q based

methods. These include the robot coffee-delivery

scenario, and process-planning problems presented in

[2] which contain many more states than the predator

prey problem, but can be compactly represented by

factored state models. Other examples of test beds of

this type can be found in [10].

6. REFERENCES
[1] Boutilier, C. and Dean, T. and Hanks, S.

“Decision-Theoretic Planning: Structural

Assumptions and Computational Leverage”.

Journal of Artificial Intelligence Research 11: 1-

94, (1999).

[2] Boutilier, C., Dearden, R. and Goldszmidt, M.

“Stochastic Dynamic Programming with factored

representations”. Artificial intelligence, 121 (1-

2), (2002).

[3] Child, C. and Stathis, K. “Rule Value

Reinforcement Learning for Cognitive Agents”,

Proceedings of AAMAS 2006, Hakodate, Japan

(2006).

[4] Child, C. and Stathis, K. “The Apriori Stochastic

Dependency Detection (ASDD) Algorithm for

Learning Stochastic Logic Rules”, In

Proceedings of the 4th International Workshop

on Computation Logic in Multi-agent Systems

(CLIMA-04), J. Dix, J. Leiter (Eds), Florida, Jan,

(2004).

[5] Dietterich, T.G. and Flann, N.S “Explanation-

Based Learning and Reinforcement Learning: A

Unified View”. Machine Learning, 28, 169-214,

(1997).

[6] Fikes, R.E. and Nilsson, N.J. “STRIPS: a new

approach to the application of theorem proving to

problem-solving”. Artificial Intelligence 2(3-4):

189-208, (1971).

[7] Kaelbling, L.P., Littman, H.L. and Moore, A.P.

“Reinforcement Learning: A Survey”. Journal of

Artificial Intelligence Research 4: 237-285,

(1996).

[8] Oates T., Schmill, M.D., Gregory, D.E. and

Cohen P.R. “Detecting complex dependencies in

categorical data”. Finding Structure in Data:

Artificial Intelligence and Statistics V. Springer

Verlag, (1995).

[9] Oates, T. and Cohen, P. R. “Learning Planning

Operators with Conditional and Probabilistic

Effects”. AAAI-96 Spring Symposium on

Planning with Incomplete Information for Robot

Problems, AAAI, (1996).

[10] Pasula, H. M, Zettlemoyer, L.S. and Kaelbling,

L.P. “Learning Probabilistic Relational Planning

Rules.” Proceedings of the Fourteenth

International Conference on Automated Planning

and Scheduling, ICAPS, 73-82, (2004).

[11] Stathis, K., Child, C., Lu, W. and Lekeas, G. K.

“Agents and Environments.” SOCS Technical

Report IST32530/CITY/005/DN/I/a1, SOCS

Consortium, (2002).

[12] Sutton, R.S., and Barto, A.G. “Reinforcement

Learning: An Introduction”. A Bradford Book,

MIT Press, (1998).

[13] Tesauro, G. J. “TD-Gammon, a self-teaching

backgammon program, achieves master-level

play.” Neural Computation 6, 2: 215-219, (1994).

[14] Watkins, C. J. C. H. “Learning from Delayed

Rewards.” PhD thesis, Cambridge University,

(1989).

