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ABSTRACT 
The use of reinforcement learning to guide action selection 

of cognitive agents has been shown to be a powerful 

technique for stochastic environments. Standard 

Reinforcement learning techniques used to provide decision 

theoretic policies rely, however, on explicit state-based 

computations of value for each state-action pair. This 

requires the computation of a number of values exponential 

to the number of state variables and actions in the system. 

This research extends existing work with an acquired 

probabilistic rule representation of an agent environment by 

developing an algorithm to apply reinforcement learning to 

values attached to the rules themselves. Structure captured 

by the rules is then used to learn a policy directly. The 

resulting value attached to each rule represents the utility of 

taking an action if the conditions of the rule are present in 

the agent’s current set of percepts. This has several 

advantages for planning purposes: generalization over many 

states and over unseen states; effective decisions can 

therefore be made with less training data than state based 

modelling systems (e.g. Dyna Q-Learning); and the problem 

of computation in an exponential state-action space is 

alleviated. The results of application of this algorithm to 

rules in a specific environment are presented, with 

comparison to standard reinforcement learning policies 

developed from related work. 

Keywords 

Reinforcement learning, perception, action, planning, 

situated agents, stochastic, environment, logic, 

algorithms. 

1. INTRODUCTION 
Rule Value Reinforcement Learning (RVRL) is a new 

reinforcement learning method, based on dynamic 

programming [12], which refines values attached to a 

set of acquired stochastic planning operators to 

produce utilities which can be used for action 

selection in situated agents. 

The development of situated agents for stochastic 

environments presents many challenges to designers 

of multi-agent systems. If the agent is to use a state-

based representation, in which every state it 

encounters is labelled depending on the value of state 

variables, the number of states is exponential to the 

number of state variables. This problem is further 

compounded by the state transition model in a 

stochastic environment, in which each action can lead 

to one of many next states. An alternative approach is 

to use a factored state model [1]. Although this 

method reduces the problem of having to store and 

calculate an exponential number of values, designers 

are often unable to provide a complete model of the 

environment from this perspective, and, if a model is 

available, classical algorithms for reinforcement 

learning require every state to be labelled with a value 

and the exponential state problem reappears. 

RVRL builds on the probabilistic rule-based factored 

state-model of stochastic environments presented in 

[4], by developing an algorithm to apply 

reinforcement learning to values attached to the rules 

themselves. Structure captured by the rules is, 

therefore, used to learn a policy directly. The 

resulting value attached to each rule represents the 

utility of taking an action if the conditions of the rule 

are present in the agent’s current set of percepts. 

We are motivated by probabilistic environments of 

the kind one finds in computer game applications, 

whereby player agents need to rely on learning by 

assuming some background knowledge rather than by 

being programmed from scratch for all eventualities 

in the game. For this class of applications our 

intuition is that a rule-based representation which 

describes the dynamics of a probabilistic environment 

can also be used as a method of compactly describing 



the effectiveness of taking various actions in that 

environment. In this context, the main contribution of 

this work is to demonstrate that a rule-based 

representation can provide an effective platform for 

state-based aggregation. Using an adaptation of 

Watkins Q-Learning [14] to regress value through the 

rules, an effective policy can be learned. 

This paper is the full version of the work presented in 

[3] and it is structured as follows. In section 2 we 

provide the background of the work on environment 

modelling using stochastic planning operators and we 

present existing techniques for generating next states 

with the operators given a current state and action. 

These techniques form a key step for RVRL, which is 

presented in section 3, with emphasis on the iterative 

rule value update function and an effective algorithm 

for performing these updates. Section 4 details 

experiments with RVRL in a predator-prey 

environment, where we compare our results to Dyna-

Q learning [12] and a model based method.  

Concluding remarks and related work are presented in 

section 5. 

2. BACKGROUND 
The overall aim of our research is to build agents that 

can learn to act autonomously in a stochastic 

environment through experience gathered from 

interaction with the environment. Acquired stochastic 

logic rules are used to provide a compact model of the 

effects of agent action in the environment, and 

reinforcement learning techniques are used to plan 

within that model. RVRL provides a method for 

planning and action within this context. 

The following sections detail: 

• The agent and its environment modelling 

process. 

• Modelling an environment using stochastic 

planning operators. 

• Acquisition of stochastic planning operators 

from experience. 

2.1 Agents and Environments 
An agent is regarded as a decision maker and the 

environment is everything outside of the direct 

control of the agent.  

• Agent: decision-maker. 

• Environment: everything it interacts with 

(outside the agent). 

The agent and environment interact continuously. The 

agent selects actions and the environment responds to 

these selections. The agent takes an action, which 

sends a message to the agent body [11]. The agent 

body is an environment object, which is updated by 

the environment (Figure 2-1). All objects in the 

environment are continuously updated, irrespective of 

whether or not they are under an agent’s control. The 

agent itself can be thought of as the mind of the body; 

assuming the necessary interfaces between the agent 

and its body, this mind could be thought of as 

operating outside the environment. The environment 

can proceed without intervention from the agent, with 

the environment acting as an external control 

mechanism. The agent body would, of course, be 

inactive without the agent’s selection of actions, but 

its state can still be changed by the environment.   
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Figure 2-1: An agent and its environment. The agent in this 

instance makes decisions by building a world model through 

interaction with the environment. 

The agent is cognitive in that it builds a model of its 

environment from experience through its percepts to 

anticipate and plan actions for the future. It receives a 

percept from the agent body, responds with an action 

and then continues by processing another percept. In 

other words, percepts create a history which is used to 

build a policy of the actions taken by the agent and a 

model of the reaction of the environment to the 

actions generated by that policy. 

2.2 Modelling an Environment with 

Stochastic Planning Operators 
There are several different ways of modelling an 

environment. One of the most basic ones is to label 

each state as it is perceived and build a map of the 

state following after each action. If the environment is 

stochastic there may be several following states with 



a probability of reaching each one. This is the method 

used by Dyna-Q, described in [12].  

A simple example will help illustrate these concepts. 

Consider an agent with two possible actions. It can 

“flip a coin” or “do nothing”. Its environment consists 

of the coin, showing either heads or tails. The agent’s 

preferred state is that the coin is showing heads 

(Figure 2-2). 

The coin example shows a model of a simple 

environment with two states (heads, tails). This form 

of model is relatively easy for an agent to build from 

empirical evidence. It builds a list of all the states in 

has observed and the actions it took in each state. It 

then records the state it observes subsequently.  

Heads Tails

Do nothing Do nothing
Flip coin

Flip coin

 

Figure 2-2: States and actions for a coin flipping agent. States 

are represented by ovals and actions by arrows. Arrows lead 

from the start state to the end state for a particular action 

labelled with a probability. 

The number of times the next state occurred for each 

state-action pair, divided by the total number of 

occurrences of the state action pair gives the 

empirical probability. Table 1 gives an example of an 

agent’s representation of a world model built in this 

way: 

Table 1: Building a world model by labelling states using 

empirical evidence 

State Action Next State Obs. Empirical Probability 

Heads None Heads 2104 2104/2104 = 1.0 

Heads 1024 1024/(1024+976)=.512 
Heads Flip 

Tails 976 976/(1024+976)= .488 

Tails None Tails 1978 1978/1978 = 1.0 

Heads 995 995/(995+1002)= .498 
Tails Flip 

Tails 1002 1002/(995+1002)=.502 

2.3 Using Rules as a Model 
If the environment the agent is modelling can be 

described in terms of a set of state variables, a 

factored state-model can be used. This describes the 

environment in terms of the dependencies between 

state variables and the evolution of these variables 

with respect to the actions taken by an agent. 

The method used in this research is to create planning 

operators from experience of interactions with the 

environment. These are rules which predict how the 

environment will change when the agent takes an 

action (or no action). 

In this context, an agent is assumed to have a set of n 

possible actions, A = {a1, …, an} and can perceive m 

possible state variables S = {s1, … sm}, each of which 

can take on a finite set of possible values. Let si = 

{vi1, …, vik} be the values associated with the i
th
 

variable. 

The general form of a stochastic planning operator is: 

P: e � a, c 

P is the probability that the effects (e) of this operator 

will become true given the conditions (a, c) of the 

operator hold. a is an action from the set A, and c is a 

set of state variables from S representing the context 

of the agent’s perception of the environment for the 

operator. Both a and c may be empty. In order to 

restrict the number of possible operators, e is defined 

to be a single variable for each operator, again taken 

from the set S. A combination of single variable 

operators is used to generate the next percept. 

As an example, consider an agent with two possible 

actions. It can “flip a coin” or “do nothing”. Its 

environment consists of the coin, showing either 

heads or tails. The agent’s preferred state is that the 

coin is showing heads. An example rule for the coin 

flipping agent would be:  

0.5: Heads � Flip 

This reads: the coin side will be Heads with 

probability 0.5 if the action was Flip. Notice that 

the previous coin side is not relevant if the Flip 

action is taken by the agent. Using a rule-based model 

allows the agent to build a more accurate model by 

removing irrelevant details. The agent can thus 

combine the following two rules: 

0.5: Heads � Flip, Heads 

0.5: Heads � Flip, Tails 

The single rule with the probability has the advantage 

of (a) combining all relevant collected evidence for 

the result of the action and (b) saving space in storing 

the model because the agent requires fewer rules. 

2.4 Learning Stochastic Planning Operators 

from Experience 
The process of building a rule set from experience 

requires the identification of conditions relevant to 

the effects of a rule. In the case of the coin flipping 



agent, the previous coin side is not relevant if the 

agent chooses the flip coin action, but is relevant if 

the agent chooses not to act. 

An effective method of building planning operators 

from experience is to use statistical significance to 

identify whether additional conditions are relevant to 

the outcome. This is the method used by MSDD [9], 

and ASDD [4].  

The ASDD rule learner is used in this research to 

create rule sets. ILP has also been used to learn rules 

of this form (see [10][1]). 

2.5 Building Successor States with Stochastic 

Planning Operators 
The ASDD algorithm generates a set of planning 

operators with only one effect in order to reduce 

substantially the final number of rules. Successor 

states are generated using these rules as follows: 

1. Find all rules matching the current state and 

selected action.  

2. Remove rules that defer to other matching rules. 

For each rule in the rule set from step 1, remove it 

if another rule has precedence over it. 

3. Generate possible states and probabilities (section 

2.5.1). 

4. Remove impossible states using constraints and 

normalise the state probabilities. 

A rule has precedence over another rule if it is a more 

accurate predictor of the effect in situations where 

both rules are applicable.  

2.5.1 Generate Possible States 

The possible states are generated using stochastic 

planning operators as follows: 

1. Create a new state from each combination of 

effect values in the rules remaining after steps 1 

and 2 above. 

2. Multiply the probability of each effect rule to 

generate the probability of each state.  

In order to demonstrate this process, we introduce to 

the predator-prey scenario (section 2.5.2). This 

scenario is also used in the experiments (section 4). 

2.5.2 The Predator Prey Environment 

The environment consists of a 4x4 grid surrounded by 

a “wall”. There is one predator and one prey. The 

predator will be assumed to have caught the prey if 

the prey lands on the same square as the predator at 

the end of its move. The prey selects a random action 

at each move. Both predator and prey have four 

actions: move north, east, south and west. An action 

has the effect of moving the agent one square in the 

selected direction, unless there is a wall, in which 

instance there is no effect. The predator and prey 

move alternate turns. The agent’s percept gives the 

contents of the four squares around it and the square 

under it. Each square can be in one of three states: 

empty, wall or agent. For example a predator agent 

which has a wall to the west and a prey to the east 

would have the percept {Empty_N, Agent_E, 

Empty_S, Wall_W, Empty_U} corresponding to 

the squares to the north, east, south, west and under 

respectively (Figure 2-3).  

 

Figure 2-3: Predator and prey in a 4x4 grid. P=predator; 

A=prey agent. P’s percept is shown to the right. 

In the predator prey domain: 

A = {Move_N, Move_E, Move_S, Move_W} 

P = {N, E, S, W, U} 

P
N
 = {Empty_N, Wall_N, Agent_N} 

P
E
, P

S
, P

W
, P

U
 follow the same form as P

N
 

Where A indicates available actions, P the possible 

percepts in each direction and PN, PE, PS, PW, PU the 

percept values in each direction. 

2.5.3 Successor State Generation Example 

A set of rules can be generated using ASDD the full 

details of which have been presented in [4].  

After steps 1 and 2 from section 2.5, we are left with 

the rules in Table 2 for the initial percept {Wall_N, 

Empty_E, Empty_S, Agent_W,  Empty_U} and 

action Move_N.  

The states generated from the rules in Table 2 are 

shown in Table 2. The probabilities for each state are 

generated by multiplying the probabilities of each 

rule that generated the state. The final state in italics 

contains two agents, and would therefore be removed 

as an impossible state (step 4 in section 2.5) and the 

probabilities of remaining states normalised. For 

details of this process the reader is referred to [4]. 



Table 2: Rules generated by the ASDD algorithm for the 

predator prey scenario matching an initial percept Wall_N, 
Empty_E, Empty_S, Agent_W, Empty_U and action 

Move_N, after removal of rules by precedence. 

Effect Conditions 

1.00: Wall_N  Move_N, Wall_N 

1.00: Empty_E  Move_N, Empty_E, Agent_W 

1.00: Empty_S Move_N, Wall_N,  Agent_W 

0.59: Empty_W 

0.41: Agent_W 

Move_N, Empty_E, Agent_W 
 

0.63: Empty_U 

0.37: Agent_U 

Move_N, Wall_N,  Agent_W 
 

 

Table 3: Generated states and associated probabilities from 

the rules in Table 2. 

Wall_N Empty_E Empty_S Empty_W Empty_U 0.37 

Wall_N Empty_E Empty_S Empty_W Agent_U 0.22 

Wall_N Empty_E Empty_S Agent_W Empty_U 0.25 

Wall_N Empty_E Empty_S Agent_W Agent_U 0.15 

 

2.5.4 Precedence 

Precedence (or deferral) between rules is required in 

situations where two or more rule-sets match the 

conditions for the same output variable. The state 

generator picks the rule-set which best matches the 

original data gathered from experience for the 

combined conditions. Table 4 and Table 5 show rules 

which both apply to the square to the north of the 

agent. In order to establish precedence in situations 

where both rule-sets conditions hold, the rule-set 

which best describes a rule with the combined 

conditions (Table 6) is preferred. In this example, we 

can see that the combined rule-set does not contain an 

agent to the north, so the set in Table 5 would be 

preferred. 

In this case the rules in Table 5 state that we will not 

see an agent to the north if we move north and 

previously observed an agent to the south. This is 

correct because there is only one agent in the 

environment and it could not have moved to the north 

if it was previously observed to the south. 

Table 4: Rule set with conditions: action = Move_N and percept 

contains Empty_N 

Effect Conditions 

0.6: Empty_N  Move_N, Empty_N 

0.1: Agent_N Move_N, Empty_N 

0.3: Wall_N Move_N, Empty_N 

 

Table 5: Rule set with conditions: action = Move_N and percept 

contains Agent_S 

Effect Conditions 

0.7: Empty_N  Move_N, Agent_S 

0.3: Wall_N Move_N, Agent_S 

 

Table 6: Rule set with combined conditions 

Effect Conditions 

0.75:Empty_N Move_N, Empty_N, Agent_S 

0.00:Agent_N Move_N, Empty_N, Agent_S 

0.25:Wall_N Move_N, Empty_N, Agent_S 

 

3. RULE VALUE REINFORCEMENT 

LEARNING 
Section 2 described the use of rules to model an 

environment. The next task for the agent is to use this 

rule model to develop an effective policy for action in 

the environment. One method of achieving this is to 

use a standard reinforcement learning technique such 

as Watkins Q-Learning [14]. 

Reinforcement learning techniques feed back rewards 

(or costs) encountered in each state to the state which 

led to the reward. In Q-learning, each state-action pair 

is given a value, which represents the utility of taking 

the action in the state. If an agent has an accurate 

state-action map, it can then take the optimal action 

by choosing the highest valued action for that state. 

The update function for Q-learning is as follows: 

'
'

( , ) ( , ) [ max ( ', ') ( , )]
s

a

Q s a Q s a R Q s a Q s aα γ← + + −

(3.1) 

Where s and a are the states and actions. s’ is the 

resulting state and a’ is the following action. Rs’ is 

the reward received for the following state. Q(s,a) 

indicates the current Q value for the state action pair. 

This update rule gradually improves estimates on the 

target function Q. The α parameter is a step-size, 

indicating how quickly the new estimate should 

change the old one. γ indicates the discount factor, 

determining the influence of future rewards on the 

current state. 

If the agent continually follows an optimal policy 

(picks the best action at each stage) with some error 

introduced in order to allow it to explore, the Q-

learning algorithm will converge on an optimal policy 

with a probability close to 1.0 [12]. If we use this 

function and take sample results (i.e. s’ is taken to be 

the random result after taking action a in state s) the 

learning is one-step temporal difference (TD) 

learning.  

Table 8 gives example Q-Values after applying the 

TD update function for the coin flipping agent with α 

= 0.5, γ = 0.95 and  rewards: {Heads = 1, Tails 



= -1}. The values in column value (1) show the 

values after the sequence of actions and results 

below: 

State: Heads, Action: Flip, Result: Heads 
State: Heads, Action: None, Result: Heads 

The values for the column value (2) show the values 

after four further actions: 

State: Heads, Action: Flip, Result: Tails 
State: Tails, Action: None, Result: Tails 
State: Tails, Action: Flip, Result: Heads 
State: Tails, Action: Flip, Result: Tails 

Table 7: Example Q-Values for the coin flipping agent (α=0.5, 

γ = 0.95). Rewards: {Heads=1, Tails=-1} 

State Action Value(1) Value(2) 

Heads Flip  0.5 -0.0125 

Tails Flip  0 0.329 

Heads None 0.738 0.738 

Tails None 0 -0.5 

3.1 The Rule Value Update Function 
The Rule Value Reinforcement Learning (RVRL) 

method that we present in this work uses the same 

principle as TD learning to update a value associated 

with each rule, rather than each state. The main 

advantages of using a state-based aggregation 

method, such as RVRL, over a standard 

reinforcement learning technique are that: 

a) The agent does not have to store a complete 

value-map with entries for every possible 

state-action combination in the environment. 

b) The agent can generalize over many states, 

thus allowing one value to represent many 

states with similar properties, and allowing a 

sensible action to be taken in previously 

unseen states. 

The coin flipping example can be used to demonstrate 

this technique. The conditions captured in our rule-set 

for calculation of next state reflect structural 

characteristics of the environment for calculation of a 

value-map. The rule values can be updated using the 

Q-learning equation, because there is only one output 

variable in each rule. Table 8 shows Q(Rule) 

approximations for the coin flipping example using 

the sequence of actions and results used for  

Table 7. 

The value of the flip action will be the same, whether 

the current state is Heads or Tails, and we can thus 

update the table more accurately. 

 

Table 8: Example Q(Rule) Values for the coin flipping agent 

(α=0.5, γ = 0.95). Rewards: {Heads=1, Tails=-1} 

Prob Effect Conditions  Value(1) Value(2) 

0.5 Heads 

0.5 Tails 

Flip 0.5 0.3231 

1.0 Heads None, 
Heads 

0.738 0.738 

1.0 Tails None, 
Tails 

0 -0.505 

 

If a model of the environment is available, full 

backup values can be used. Rather than taking a 

random sample for s
t+1

, the probability (P) of 

reaching each possible next state (s’) given that 

action a was taken in state s can be used in the 

equation, and the best next action taken as the 

maximum action (a’) for each possible next state. 

This is the principle behind dynamic programming 

(DP). The update function for DP [12] is: 

''
''

( , )

( , ) [ max ( ', ') ( , )]
a

sss
as

Q s a

Q s a R Q s a Q s aP α γ

←

+ + −∑
 

(3.2) 

The stochastic planning operators act as a model in 

rule value reinforcement learning: it is therefore 

possible to use an adaptation of the above equation. 

The rule values for stochastic planning operators 

cannot be updated directly using equation (3.2), 

because more than one rule will match the next state 

(s’) and would therefore be used to generate 

consecutive states (see Table 2) due to several output 

variables being present. 

The rule learning function, therefore, replaces 

Q(s’,a’) with an  average value for all matching 

rules which have precedence (and would therefore be 

used in generation of the successor state). The rules 

with precedence are used to give the most accurate 

representation of the dynamics of the environment in 

state s’.  

Q(s,a) is replaced by the value of the rule which 

will be updated. All matching rules are updated in 

turn by the algorithm because their estimate of value 

will be improved by the update, whether they have 

precedence or not.  
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∑

(3.3) 

AvgQ(WinningRules(s’,a’)) returns the average 

rule value for rules which have precedence in state 

s’ if action a’ is taken. Table 9 shows the winning 

rules from Table 2 and the values that have been 

learned for them after 15,000 iterations of the rule 

update function. Notice that all rules with the same 

condition have the same value. 

 

Table 9: Rule Values for a set of Winning Rules 

Effect Conditions Value 

1.00: Wall_N  Move_N, Wall_N -0.27 

1.00: Empty_E  Move_N, Empty_E, 
Agent_W 

-0.23 

1.00: Empty_S Move_N, Wall_N,  
Agent_W 

0.43 

0.59: Empty_W 

0.41: Agent_W 

Move_N, Empty_E, 
Agent_W 

-0.23 

0.63: Empty_U 

0.37: Agent_U 

Move_N, Wall_N,  
Agent_W 

0.43 

 

AvgQ(WinningRules(s’,a’)) finds the average 

value of the winning rules and returns the value. The 

average value of the rules in Table 9 is: (-0.27 -0.23 

+0.43 -0.23 +0.43)/5 = 0.026. 

MatchingRules(s,a) returns all rules whose 

conditions match the current state and action. The 

values of all the returned rules are updated by 

equation (3.3). 

3.2 Iterative Rule Value Evaluation 
Section 2.5 described the process of building 

successor states using stochastic planning operators 

as a model. If this is combined with the rule-value 

update function given in equation (3.3) it is possible 

to continuously generate next states from an initial 

state and update the rule values for those states until 

satisfactory values for the rules have been generated 

(or a number of updates, n, has been performed). This 

process is described by the following algorithm: 

Initialise Q(rule) = 0, for all rule ∈ rules; 
Repeat { 

  Initialise s = random state, a = random action; 

  Generate next states, s’ and prob(s’) for s,a 

  totalValue = 0; totalReward = 0; 

  For each s’ ∈ successor states { 
    totalReward += reward(s’) * prob(s’); 

    maxActionValue = -∞; 
    maxAction = null; 

    For each a’ ∈ actions { 
       actionValue = AvgQ(WinningRules(s’,a’)); 

       if (actionValue > maxActionValue) 

         maxActionValue = actionValue; 

    } 

    totalValue += maxActionValue * prob(s’); 

  } 

   

  For each rules ∈ matchingRules(s,a) 
    Q(rule) = Q(rule) + 

              α[totalReward + γ*totalValue; 
              –Q(rule)]; 

} for n steps 

 

The sampling (TD learning) equivalent to this method 

would take a sample next state s’ rather than 

calculating the probability of each next state. The 

process is otherwise the same. 

A low α value should be used in order to allow the 

rules to gradually approach the correct value, rather 

than being influenced by rules which do not directly 

correspond to reward states. In the predator prey 

environment, for example, reward values are based on 

whether the prey is the same square as the predator. 

Other rules may fluctuate greatly in value. 

4. EXPERIMENTATION 
RVRL as described in the previous section was 

applied to the predator-prey environment outlined in 

section 2.5.2. The task for our learning algorithm is to 

construct an effective policy under these conditions, 

allowing the predator to catch the prey with optimal 

frequency. The task is complicated by the fact that the 

predator is only adjudged to have captured the prey if 

the prey moves into, or remains in, the predator’s 

square at the end of its turn. Therefore the predator 

could not simply catch the prey by moving onto its 

square each move. The task is continuous, rather than 

episodic, meaning that the predator and prey will 

continue to move after the prey is caught, rather than 

re-starting each time. 

In experiments using a state-action observation-based 

model and using standard TD learning, it was found 

that with a small amount of experience in the 

environment, the predator will tend to move next to 

the prey but not on-top of it. This is a reasonable 



tactic as the prey is then likely to move onto the 

predator and thus be caught. The optimal tactic, 

however, gained from a very large observation set 

(200,000 moves) was found to be one in which the 

predator moves into the prey’s square every move. 

This enables the predator to always be in sight of the 

prey and catch it whenever the prey moves into a 

wall. An example of a rule which captures this 

behaviour is one with the conditions:  

Agent_N, Move_N. 

Our experiments showed that RVRL gives high value 

to this rule and the Move_S, Move_E and Move_W 

equivalents. Rules which attain higher value than this 

are more effective and have conditions such as: 

Agent_U, Move_N, Wall_N, Wall_E 

This corresponds to the situation where the predator 

is on-top of the prey in the NE corner of the map and 

chooses to move into a wall to the north. This gives 

the predator a 50% chance of catching the prey (the 

prey moves randomly and will move into the wall to 

the north or east 50% of the time). The “effects” of 

the rules are not shown, because the same value will 

be learned for all rules with the same conditions. 

A sample of the final rule weights from rules learned 

from 60,000 moves experience after RVRL was run 

on the rule set for 15,000 iterations is given in Table 

10. 

Table 10: Sample rule weights for rules learned from 60,000 

moves experience and 15,000 iterations of RVRL. 

No. Conditions Value 

1 Move_W, Wall_W, Wall_S, Agent_U 0.43 

2 Move_E, Wall_W, Wall_S, Agent_U -0.03 

3 Move_N, Wall_W, Agent_N 0.11 

4 Move_N, Wall_N, Agent_U 0.11 

5 Move_E, Agent_E -0.07 

6 Move_W, Agent_E -0.21 

7 Move_S -0.28 

8  -0.28 

 

Rules 1 and 2 have the same conditions, in that the 

predator is in the south west corner of the grid, with 

the prey underneath it. The rule has a positive value if 

the predator moves into a wall (rule 1), and a negative 

value if the predator moves away from the wall (rule 

2). The agent would, therefore, pick the action of 

moving into the wall and thus have the highest chance 

of catching the prey (50% if the prey moves into a 

wall on its move). 

Rules 3 and 4 both have the same weight. If the 

predator takes the move north action in rule 3, it will 

be on-top of the prey and will therefore catch the prey 

if it moves into the wall to the west, which will 

happen 25% of the time. If the predator takes the 

move north action in rule 4 it will move into the wall 

and therefore stay on-top of the prey (which is under 

it). The predator will then catch the prey if it moves 

into the wall to the north, which will happen 25% of 

the time. These two situations should be of equal 

utility to the agent, which has been successfully 

learned by RVRL. 

Rules 5 and 6 show the weights for moving east onto 

the prey to the east and moving west away from a 

prey to the east respectively. Moving onto the prey 

has a higher weight, and the predator will thus pick 

this action.  

Rules 7 and 8 have the same value. Rule 7 is the 

general value of moving south with no other 

information. Rule 8 has no conditions and is thus the 

general value of taking a random move in the 

environment. These rules have the same value, which 

makes intuitive sense because moving south with no 

information would effectively mean taking a random 

move. 

Tests were performed on the performance of Rule 

Value Reinforcement learning with: 

a) Dyna-Q: a reinforcement learner which builds a 

frequency based model of the environment. Q-

Learning is used on the acquired model to build 

values for each state action pair (the Q(s, a) map). 

b) A stochastic rule based model of the environment 

to build a state, action value map. This is the 

equivalent of running Q-learning, using the rule 

based model for experience to build the Q(s, a) 

map. This method is described in [4]. 

Rule Value reinforcement learning builds a Q(rule) 

map, assigning value to each rule. Table 11 gives a 

comparison of the three methods. 

In each test case the methods were given the same 

experience with which to build the model. The 

predator and prey were run for a set number of steps, 

taking random moves at each step. Using the model, 

each method ran Q-learning (in the first two cases), or 

RVRL for 15,000 iterations in order to build a value 

map. Once the map had been created, each method 

ran for 40,000 steps in the predator prey environment, 

selecting the action with the highest utility at each 

step. The number of times the predator “caught” the 



prey was then recorded. The average number of 

moves taken to capture the agent is given in Table 11. 

The two Q-learning based methods selected the best 

action at each step picking the highest valued action 

from all matching Q(s,a) values for the current state 

(s). 

Rule based reinforcement learning picked the highest 

valued action from all matching: 

  AvgQ(WinningRules(s,a))  

This was achieved by taking each possible action in 

turn and finding the value of: 

AvgQ(WinningRules(s,a))  

for the current state (s). 

 

Table 11: Moves per capture for Dyna-Q, Stochastic Rule 

model Q (SR-Q) and Rule Value Reinforcement Learning 

(RVRL). Reinforcement learning ran for 15,000 iterations. 

Trials ran for 40,000 steps. Training data gathered for 

between 100 and 60,000 steps 

Method 100 500 1000 10000 15000 30000 60000 

Dyna-Q 17.5 16.4 12.0 8.8 7.4 6.2 4.6 

SR-Q 13.1 13.4 11.5 9.2 8.8 7.1 4.7 

RVRL 13.2 12.7 11.3 9.3 8.1 7.0 4.7 

 

Moves per capture for the predator taking random 

moves in the environment were found to be 16.01 

(there are 16 squares is the environment and the 

predator will be randomly in the same 1 in 16 moves.  

A trail was also run on a “perfect” model (a Dyna-Q 

model built from 400,000 moves). In this instance, the 

predator took 4.32 moves to capture the prey. 

The results in Table 11 for 100, 500 and 1000 moves 

training data show that RVRL is more effective than 

Dyna-Q when very little experience has been gathered 

in the environment. In this case the Dyna-Q agent is 

forced to take a random move in many of the states 

encountered in the test, because it has no experience 

which matches the situation. An environment in 

which a random move was more costly would, 

therefore, show the value of RVRL in a more 

pronounced way under limited training data. With this 

limited model the Dyna-Q system “expected” the prey 

to move in the same way as it did in the training data, 

which often meant it picked an action that performed 

poorly. The RVRL agent, however, was able to make 

generalisations in two ways: first to generalise a 

model using the stochastic logic rules, which allows 

the system to predict future states from the current 

state, even when this state has not been seen before; 

second, RVRL learned values are applicable across 

multiple states, allowing learned values to be applied 

in unseen states. This allows the small amount of 

experience gathered to be generalised and used, 

which is demonstrated by the improved performance 

under these conditions. SR-Q is only able to make use 

of the first of these generalisations, and therefore 

performed slightly better than Dyna-Q, but not as well 

as RVRL. 

As the state action map gains a larger amount of 

experience (10,000, 15,000 and 30,000 steps), its 

model becomes closer to a perfect model in this test 

environment, while the generalisations made by the 

rule learner become less effective. This is due largely 

to shortcomings in the ASDD modelling method with 

this level of training data [4] which is reflected in the 

similar performance of the SR-Q results. The similar 

performance of SR-Q and RVRL shows that the 

slightly lower performance is due to this modelling 

inefficiency, rather than shortcomings in the RVRL 

algorithm. The increased performance of RVRL over 

SR-Q demonstrates that the ability of RVRL to 

generalise helps overcome this shortcoming.  

When the learned rules become a near perfect 

representation of the environment (at 60,000 steps 

training data), the results show that RVRL is capable 

of learning near perfect valued rules, and thus the 

utility of taking an action in the current state, again 

demonstrating that the rule values are capable of 

capturing a policy at least as effectively as a state 

action model under these conditions. 

5. CONCLUSIONS 
This paper has presented the Rule Value 

Reinforcement Learning (RVRL) method for agents 

situated in stochastic environments. The method 

builds upon earlier work on learning stochastic 

planning operators, with emphasis on making these 

techniques applicable in agent-based systems. Results 

in our experimentation are extremely encouraging in 

that the algorithm is able to learn rule-values which 

accurately capture the utility of actions in the 

predator-prey environment without the need for a 

state-action map.  

Techniques for reducing the need to store a number of 

state-action values exponential to the number of 

variables in the state fall into two main categories: 



a) State-based aggregation; 

b) Functional Approximation;  

Techniques for reducing the need to store a number of 

state-action values exponential to the number of state 

variables in the state fall into two main categories: 

state-based aggregation and functional approximation. 

RVRL is a state-based aggregation technique, in that 

states which behave in a similar way with respect to a 

given action sequence and goal are given the same 

value. This type of aggregation is captured within the 

rule values in our technique. Other techniques in this 

category include: 

a) Decision Theoretic Regression [2]: a decision 

tree representation of value is used, 

associated with a Dynamic Bayesian Network 

model of the environment. The method uses 

structure in the reward function to build a 

decision tree representation of the value-map 

which identifies regions of the state-action 

space whose values are the same. Regressions 

are made through each action to provide 

value trees for each available action. 

b) Explanation based reinforcement learning [5]: 

Uses actions represented by deterministic 

STRIPS-like operators and has been extended 

to stochastic actions. Unlike RVRL, the 

technique does not allow for multiple 

concurrent output variables and assumes a 

single goal state rather than a general reward 

function. 

Functional approximation techniques seek to create a 

compact approximation to the value function using, 

for example, neural networks. This technique gained 

prominence with TD-Gammon, which created a 

championship winning backgammon program [13]. 

The technique uses an approximation, rather than 

exploiting regions of uniform value in the feature 

space. Full comparisons with these techniques, 

however, are beyond the scope of this paper.  

The use of acquired stochastic planning operators, 

combined with RVRL, represent a promising 

development in reinforcement learning. We plan to 

perform further tests in order to evaluate the 

performance of the method in a variety of 

environments. Scenarios in which the state variables 

are less tightly coupled are likely to show greater 

benefits for the method, compared to Dyna-Q based 

methods. These include the robot coffee-delivery 

scenario, and process-planning problems presented in 

[2] which contain many more states than the predator 

prey problem, but can be compactly represented by 

factored state models. Other examples of test beds of 

this type can be found in [10]. 
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