126 research outputs found

    Ancient mammalian and plant DNA from Late Quaternary stalagmite layers at Solkota Cave, Georgia

    Get PDF
    Metagenomic analysis is a highly promising technique in paleogenetic research that allows analysis of the complete genomic make-up of a sample. This technique has successfully been employed to archaeological sediments, but possible leaching of DNA through the sequence limits interpretation. We applied this technique to the analysis of ancient DNA (aDNA) from Late Quaternary stalagmites from two caves in Western Georgia, Melouri Cave and Solkota. Stalagmites form closed systems, limiting the effect of leaching, and can be securely dated with U-series. The analyses of the sequence data from the Melouri Cave stalagmite revealed potential contamination and low preservation of DNA. However, the two Solkota stalagmites preserved ancient DNA molecules of mammals (bear, roe deer, bats) and plants (chestnut, hazelnut, flax). The aDNA bearing layers from one of the two Solkota stalagmites were dated to between ~84 ka and ~56 ka BP by U-series. The second Solkota stalagmite contained excessive detrital clay obstructing U-series dating, but it also contained bear bones with a minimum age of ~50 BP uncalibrated years and ancient DNA molecules. The preservation of authentic ancient DNA molecules in Late Quaternary speleothems opens up a new paleogenetic archive for archaeological, paleontological and paleoenvironmental research

    Persistent Neanderthal occupation of the open-air site of ‘Ein Qashish, Israel

    No full text
    Over the last two decades, much of the recent efforts dedicated to the Levantine Middle Paleolithic has concentrated on the role of open-air sites in the settlement system in the region. Here focus on the site of ‘Ein Qashish as a cases study. Located in present-day northern Israel, the area of this site is estimated to have been >1300 m2, of which ca. 670 were excavated. The site is located at the confluence of the Qishon stream with a small tributary running off the eastern flanks of the Mt. Carmel. At the area of this confluence, water channels and alluvial deposits created a dynamic depositional environment. Four Archaeological Units were identified in a 4.5-m thick stratigraphic sequence were dated by Optically Stimulated Luminescence (OSL) to between—71 and 54 ka, and probably shorter time span–~70-~60 ka. Here we present the diverse material culture remains from the site (lithics, including refitted sequences; modified limestone pieces; molluscs; faunal remains) against their changing paleogeographic backdrop. Skeletal evidence suggests that these remains were associated with Neanderthals. The large-scale repeated accumulation of late Middle Paleolithic remains in the same place on the landscape provides a unique opportunity to address questions of occupation duration and intensity in open-air sites. We find that each occupation was of ephemeral nature, yet presents a range of activities, suggesting that the locale has been used as a generalized residential site rather than specialized task-specific ones. This role of ‘Ein Qashish did not change through time, suggesting that during the late Middle Paleolithic settlement system in this part of the southern Levant were stable

    Microstratigraphic preservation of ancient faunal and hominin DNA in Pleistocene cave sediments

    Get PDF
    Ancient DNA recovered from Pleistocene sediments represents a rich resource for the study of past hominin and environmental diversity. However, little is known about how DNA is preserved in sediments and the extent to which it may be translocated between archaeological strata. Here, we investigate DNA preservation in 47 blocks of resin-impregnated archaeological sediment collected over the last four decades for micromorphological analyses at 13 prehistoric sites in Europe, Asia, Africa, and North America and show that such blocks can preserve DNA of hominins and other mammals. Extensive microsampling of sediment blocks from Denisova Cave in the Altai Mountains reveals that the taxonomic composition of mammalian DNA differs drastically at the millimeter-scale and that DNA is concentrated in small particles, especially in fragments of bone and feces (coprolites), suggesting that these are substantial sources of DNA in sediments. Three microsamples taken in close proximity in one of the blocks yielded Neanderthal DNA from at least two male individuals closely related to Denisova 5, a Neanderthal toe bone previously recovered from the same layer. Our work indicates that DNA can remain stably localized in sediments over time and provides a means of linking genetic information to the archaeological and ecological records on a microstratigraphic scale

    Histopathological findings from the investigation of paediatric acute hepatitis of unknown aetiology, United Kingdom 2022

    Get PDF
    In 2022, there were global reports of increased numbers of acute hepatitis not explained by hepatitis A–E virus infection in children. This manuscript summarises histopathology results from 20 patients in the United Kingdom who underwent liver transplant or had a liver biopsy as part of aetiological investigations. All available histopathological samples were reviewed centrally as part of the outbreak investigation. A working group comprised of infection specialists, hepatologists and histopathologists met virtually to review the cases, presentation, investigations and histopathology. All 20 liver samples had evidence of inflammation without significant interface activity, and submassive confluent pan-lobular or multilobular hepatocellular necrosis. Overall, the predominant histopathological findings were of acute nonspecific hepatitis with submassive hepatic necrosis and central vein perivenulitis and endothelitis. Histopathological findings were a poor indicator of aetiology

    Prevalence of potential drug-drug interactions in the intensive care unit of a Brazilian teaching hospital

    Get PDF
    Abstract Patients in intensive care unit are prescribed large numbers of drugs, highlighting the need to study potential Drug-Drug Interactions in this environment. The aim of this study was to delineate the prevalence and risk of potential drug-drug interactions between medications administered to patients in an ICU. This cross-sectional observational study was conducted during 12 months, in an adult ICU of a teaching hospital. Inclusion criteria were: prescriptions with 2 or more drugs of patients admitted to the ICU for > 24 hours and age of ≄18 years. Potential Drug-Drug Interactions were quantified and classified through MicromedexTM database. The 369 prescriptions included in this study had 205 different drugs, with an average of 13.04 ± 4.26 (mean ± standard deviation) drugs per prescription. Potential Drug-Drug Interactions were identified in 89% of these, with an average of 5.00 ± 5.06 interactions per prescription. Of the 405 different pairs of potentially interacting drugs identified, moderate and major interactions were present in 74% and 67% of prescriptions, respectively. The most prevalent interaction was between dipyrone and enoxaparin (35.8%), though its clinical occurrence was not observed in this study. The number of potential Drug-Drug Interactions showed significant positive correlations with the length of stay in the intensive care unit, and with the number of prescribed drugs. Acknowledging the high potential for Drug-Drug Interactions in the ICU represents an important step toward improving patient safety and best therapy results

    Bats in the anthropogenic matrix: Challenges and opportunities for the conservation of chiroptera and their ecosystem services in agricultural landscapes

    Get PDF
    Intensification in land-use and farming practices has had largely negative effects on bats, leading to population declines and concomitant losses of ecosystem services. Current trends in land-use change suggest that agricultural areas will further expand, while production systems may either experience further intensification (particularly in developing nations) or become more environmentally friendly (especially in Europe). In this chapter, we review the existing literature on how agricultural management affects the bat assemblages and the behavior of individual bat species, as well as the literature on provision of ecosystem services by bats (pest insect suppression and pollination) in agricultural systems. Bats show highly variable responses to habitat conversion, with no significant change in species richness or measures of activity or abundance. In contrast, intensification within agricultural systems (i.e., increased agrochemical inputs, reduction of natural structuring elements such as hedges, woods, and marshes) had more consistently negative effects on abundance and species richness. Agroforestry systems appear to mitigate negative consequences of habitat conversion and intensification, often having higher abundances and activity levels than natural areas. Across biomes, bats play key roles in limiting populations of arthropods by consuming various agricultural pests. In tropical areas, bats are key pollinators of several commercial fruit species. However, these substantial benefits may go unrecognized by farmers, who sometimes associate bats with ecosystem disservices such as crop raiding. Given the importance of bats for global food production, future agricultural management should focus on “wildlife-friendly” farming practices that allow more bats to exploit and persist in the anthropogenic matrix so as to enhance provision of ecosystem services. Pressing research topics include (1) a better understanding of how local-level versus landscape-level management practices interact to structure bat assemblages, (2) the effects of new pesticide classes and GM crops on bat populations, and (3) how increased documentation and valuation of the ecosystem services provided by bats could improve attitudes of producers toward their conservation
    • 

    corecore