117 research outputs found

    Pupil dynamics during very light exercise predict benefits to prefrontal cognition

    Get PDF
    軽運動の前頭前野機能向上効果は瞳に映る. 京都大学プレスリリース. 2023-07-12.Physical exercise, even stress-free very-light-intensity exercise such as yoga and very slow running, can have beneficial effects on executive function, possibly by potentiating prefrontal cortical activity. However, the exact mechanisms underlying this potentiation have not been identified. Evidence from studies using pupillometry demonstrates that pupil changes track the real-time dynamics of activity linked to arousal and attention, including neural circuits from the locus coeruleus to the cortex. This makes it possible to examine whether pupil-linked brain dynamics induced during very-light-intensity exercise mediate benefits to prefrontal executive function in healthy young adults. In this experiment, pupil diameter was measured during 10 min of very-light-intensity exercise (30% V̇o2peak). A Stroop task was used to assess executive function before and after exercise. Prefrontal cortical activation during the task was assessed using multichannel functional near-infrared spectroscopy (fNIRS). We observed that very-light-intensity exercise significantly elicited pupil dilation, reduction of Stroop interference, and task-related left dorsolateral prefrontal cortex activation compared with the resting-control condition. The magnitude of change in pupil dilation predicted the magnitude of improvement in Stroop performance. In addition, causal mediation analysis showed that pupil dilation during very-light-intensity exercise robustly determined subsequent enhancement of Stroop performance. This finding supports our hypothesis that the pupil-linked mechanisms, which may be tied to locus coeruleus activation, are a potential mechanism by which very light exercise enhances prefrontal cortex activation and executive function. It also suggests that pupillometry may be a useful tool to interpret the beneficial impact of exercise on boosting cognition

    Reconstruction of the eruptive history of Usu volcano, Hokkaido, Japan, inferred from petrological correlation between tephras and dome lavas

    Get PDF
    Usu volcano has erupted nine times since 1663. Most eruptive events started with an explosive eruption, which was followed by the formation of lava domes. However, the ages of several summit lava domes and craters remain uncertain. The petrological features of tephra deposits erupted from 1663 to 1853 are known to change systematically. In this study, we correlated lavas with tephras under the assumption that lava and tephra samples from the same event would have similar petrological features. Although the initial explosive eruption in 1663 was not accompanied by lava effusion, lava dome or cryptodome formation was associated with subsequent explosive eruptions. We inferred the location of the vent associated with each event from the location of the associated lava dome and the pyroclastic flow deposit distribution and found that the position of the active vent within the summit caldera differed for each eruption from the late 17th through the 19th century. Moreover, we identified a previously unrecognized lava dome produced by a late 17th century eruption; this dome was largely destroyed by an explosive eruption in 1822 and was replaced by a new lava dome during a later stage of the 1822 event at nearly the same place as the destroyed dome. This new interpretation of the sequence of events is consistent with historical sketches and documents. Our results show that petrological correlation, together with geological evidence, is useful not only for reconstructing volcanic eruption sequences but also for gaining insight into future potential disasters

    Aerobic fitness associates with mnemonic discrimination as a mediator of physical activity effects: evidence for memory flexibility in young adults

    Get PDF
    A physically active lifestyle has beneficial effects on hippocampal memory function. A potential mechanism for this effect is exercise-enhanced hippocampal plasticity, particularly in the dentate gyrus (DG). Within hippocampal memory formation, the DG plays a crucial role in pattern separation, which is the ability to discriminate among similar experiences. Computational models propose a theoretical hypothesis that enhanced DG-mediated pattern separation leads to “memory flexibility”–a selective improvement in the ability to overcome moderate levels of mnemonic interference. Thus, in the current cross-sectional study of healthy young adults, we tested the working hypothesis that aerobic fitness, as a physiological indicator of endurance capacity associated with physical activity, is strongly associated with mnemonic discrimination at moderate interference levels. When divided the sample (n = 75) based on a median split of aerobic fitness, the higher fitness group had better discrimination performance for moderate interference levels compared to the lower fitness group, namely, exhibited memory flexibility. Moreover, aerobic fitness levels were positively associated with discrimination performance for moderate interference levels, as a mediator of physical activity effects. This evidence suggests that aerobic fitness levels are associated with hippocampal DG-related memory, which is consistent with literature showing positive effect of physical exercise on hippocampal memory

    Stepwise Catalytic Mechanism via Short-Lived Intermediate Inferred from Combined QM/MM MERP and PES Calculations on Retaining Glycosyltransferase ppGalNAcT2

    Get PDF
    The glycosylation of cell surface proteins plays a crucial role in a multitude of biological processes, such as cell adhesion and recognition. To understand the process of protein glycosylation, the reaction mechanisms of the participating enzymes need to be known. However, the reaction mechanism of retaining glycosyltransferases has not yet been sufficiently explained. Here we investigated the catalytic mechanism of human isoform 2 of the retaining glycosyltransferase polypeptide UDP-GalNAc transferase by coupling two different QM/MM-based approaches, namely a potential energy surface scan in two distance difference dimensions and a minimum energy reaction path optimisation using the Nudged Elastic Band method. Potential energy scan studies often suffer from inadequate sampling of reactive processes due to a predefined scan coordinate system. At the same time, path optimisation methods enable the sampling of a virtually unlimited number of dimensions, but their results cannot be unambiguously interpreted without knowledge of the potential energy surface. By combining these methods, we have been able to eliminate the most significant sources of potential errors inherent to each of these approaches. The structural model is based on the crystal structure of human isoform 2. In the QM/MM method, the QM region consists of 275 atoms, the remaining 5776 atoms were in the MM region. We found that ppGalNAcT2 catalyzes a same-face nucleophilic substitution with internal return (SNi). The optimized transition state for the reaction is 13.8 kcal/mol higher in energy than the reactant while the energy of the product complex is 6.7 kcal/mol lower. During the process of nucleophilic attack, a proton is synchronously transferred to the leaving phosphate. The presence of a short-lived metastable oxocarbenium intermediate is likely, as indicated by the reaction energy profiles obtained using high-level density functionals

    The Semantic Reader Project: Augmenting Scholarly Documents through AI-Powered Interactive Reading Interfaces

    Full text link
    Scholarly publications are key to the transfer of knowledge from scholars to others. However, research papers are information-dense, and as the volume of the scientific literature grows, the need for new technology to support the reading process grows. In contrast to the process of finding papers, which has been transformed by Internet technology, the experience of reading research papers has changed little in decades. The PDF format for sharing research papers is widely used due to its portability, but it has significant downsides including: static content, poor accessibility for low-vision readers, and difficulty reading on mobile devices. This paper explores the question "Can recent advances in AI and HCI power intelligent, interactive, and accessible reading interfaces -- even for legacy PDFs?" We describe the Semantic Reader Project, a collaborative effort across multiple institutions to explore automatic creation of dynamic reading interfaces for research papers. Through this project, we've developed ten research prototype interfaces and conducted usability studies with more than 300 participants and real-world users showing improved reading experiences for scholars. We've also released a production reading interface for research papers that will incorporate the best features as they mature. We structure this paper around challenges scholars and the public face when reading research papers -- Discovery, Efficiency, Comprehension, Synthesis, and Accessibility -- and present an overview of our progress and remaining open challenges

    The relationship between eruptive activity, flank collapse, and sea level at volcanic islands: A long-term (>1 Ma) record offshore Montserrat, Lesser Antilles

    Get PDF
    Hole U1395B, drilled southeast of Montserrat during Integrated Ocean Drilling Program Expedition 340, provides a long (>1 Ma) and detailed record of eruptive and mass-wasting events (>130 discrete events). This record can be used to explore the temporal evolution in volcanic activity and landslides at an arc volcano. Analysis of tephra fall and volcaniclastic turbidite deposits in the drill cores reveals three heightened periods of volcanic activity on the island of Montserrat (?930 ka to ?900 ka, ?810 ka to ?760 ka, and ?190 ka to ?120 ka) that coincide with periods of increased volcano instability and mass-wasting. The youngest of these periods marks the peak in activity at the Soufrière Hills volcano. The largest flank collapse of this volcano (?130 ka) occurred towards the end of this period, and two younger landslides also occurred during a period of relatively elevated volcanism. These three landslides represent the only large (>0.3 km3) flank collapses of the Soufrière Hills edifice, and their timing also coincides with periods of rapid sea-level rise (>5 m/ka). Available age data from other island arc volcanoes suggests a general correlation between the timing of large landslides and periods of rapid sea-level rise, but this is not observed for volcanoes in intra-plate ocean settings. We thus infer that rapid sea-level rise may modulate the timing of collapse at island arc volcanoes, but not in larger ocean-island settings
    corecore