607 research outputs found

    DNA compaction by the higher-order assembly of PRH/Hex homeodomain protein oligomers

    Get PDF
    Protein self-organization is essential for the establishment and maintenance of nuclear architecture and for the regulation of gene expression. We have shown previously that the Proline-Rich Homeodomain protein (PRH/Hex) self-assembles to form oligomeric complexes that bind to arrays of PRH binding sites with high affinity and specificity. We have also shown that many PRH target genes contain suitably spaced arrays of PRH sites that allow this protein to bind and regulate transcription. Here, we use analytical ultracentrifugation and electron microscopy to further characterize PRH oligomers. We use the same techniques to show that PRH oligomers bound to long DNA fragments self-associate to form highly ordered assemblies. Electron microscopy and linear dichroism reveal that PRH oligomers can form protein–DNA fibres and that PRH is able to compact DNA in the absence of other proteins. Finally, we show that DNA compaction is not sufficient for the repression of PRH target genes in cells. We conclude that DNA compaction is a consequence of the binding of large PRH oligomers to arrays of binding sites and that PRH is functionally and structurally related to the Lrp/AsnC family of proteins from bacteria and archaea, a group of proteins formerly thought to be without eukaryotic equivalents

    DNA compaction by the higher-order assembly of PRH/Hex homeodomain protein oligomers

    Get PDF
    Protein self-organization is essential for the establishment and maintenance of nuclear architecture and for the regulation of gene expression. We have shown previously that the Proline-Rich Homeodomain protein (PRH/Hex) self-assembles to form oligomeric complexes that bind to arrays of PRH binding sites with high affinity and specificity. We have also shown that many PRH target genes contain suitably spaced arrays of PRH sites that allow this protein to bind and regulate transcription. Here, we use analytical ultracentrifugation and electron microscopy to further characterize PRH oligomers. We use the same techniques to show that PRH oligomers bound to long DNA fragments self-associate to form highly ordered assemblies. Electron microscopy and linear dichroism reveal that PRH oligomers can form protein–DNA fibres and that PRH is able to compact DNA in the absence of other proteins. Finally, we show that DNA compaction is not sufficient for the repression of PRH target genes in cells. We conclude that DNA compaction is a consequence of the binding of large PRH oligomers to arrays of binding sites and that PRH is functionally and structurally related to the Lrp/AsnC family of proteins from bacteria and archaea, a group of proteins formerly thought to be without eukaryotic equivalents

    The role of rotation on Petersen Diagrams. II The influence of near-degeneracy

    Full text link
    In the present work, the effect of near-degeneracy on rotational Petersen diagrams (RPD) is analysed. Seismic models are computed considering rotation effects on both equilibrium models and adiabatic oscillation frequencies (including second-order near-degeneracy effects). Contamination of coupled modes and coupling strength on the first radial modes are studied in detail. Analysis of relative intrinsic amplitudes of near-degenerate modes reveals that the identity of the fundamental radial mode and its coupled quadrupole pair are almost unaltered once near-degeneracy effects are considered. However, for the first overtone, a mixed radial/quadrupole identity is always predicted. The effect of near-degeneracy on the oscillation frequencies becomes critical for rotational velocities larger than 15-20 km/s, for which large wriggles in the evolution of the period ratios are obtained (up 10210^{-2}). Such wriggles imply uncertainties, in terms of metallicity determinations using RPD, reaching up to 0.50 dex, which can be critical for Pop. I HADS (High Amplitude \dss). In terms of mass determinations, uncertainties reaching up to 0.5 M_sun are predicted. The location of such wriggles is found to be independent of metallicity and rotational velocity, and governed mainly by the avoided-crossing phenomenon.Comment: 8 pages, 7 figures, 1 table. (accepted for publication in A&A

    Multifocal High-Grade Pancreatic Precursor Lesions: A Case Series and Management Recommendations

    Get PDF
    Background: The risk of developing invasive cancer in the remnant pancreas after resection of multifocal high-grade pancreatic precursor lesions is not well known. We report three patients who were followed up after resection of multifocal high-grade pancreatic intraepithelial neoplasia (PanIN)-3 or intraductal papillary mucinous neoplasia (IPMN), two of whom eventually developed invasive carcinoma. Presentation: 1) 68-year-old woman who had a laparoscopic distal pancreatectomy for multifocal mixed-type IPMN, identified as high-grade on final pathology, with negative surgical margins. During semiannual monitoring, eight years from the first surgery, the patient developed suspicious features prompting surgical resection of the body with final pathology revealing invasive ductal adenocarcinoma in the setting of IPMN. 2) 48-year-old woman who had a distal pancreatectomy for severe acute/chronic symptomatic pancreatitis, with final pathology revealing multifocal high-grade PanIN-3, with negative surgical margins. Despite semiannual monitoring, two years from the first surgery, the patient developed pancreatic adenocarcinoma with liver metastasis. 3) 55-year-old woman who had a Whipple procedure for symptomatic chronic pancreatitis, with multifocal PanIN-3 on final pathology. The patient underwent completion pancreatectomy due to symptomatology and her high-risk profile, with final pathology confirming multifocal PanIN-3. Conclusion: Multifocal high-grade dysplastic lesions of the pancreas might benefit from surgical resection

    Overexpression of microRNA-16 declines cellular growth, proliferation and induces apoptosis in human breast cancer cells

    Get PDF
    MicroRNAs (miRNA) are a large family of small single-stranded RNA molecules found in all multicellular organisms. Early studies have been shown that miRNA are involved in cancer development and progression, and this role can be done by working as an oncogenes and tumor suppressor genes, so manipulation of this molecules can be a promising approach in cancer therapy, and experimental results represented that the modification in breast cancer phenotype is possible by miRNA expression alteration. miR-16, which is located in 13q14 chromosome, plays critical roles as a tumor suppressor by targeting several oncogenes which regulate cell cycle and apoptosis. Hence, in the present study, we investigated whether miR-16 could decline growth and survival of MCF-7 cell line as model of human breast cancer. MCF-7 cell line was infected with lentiviruses containing miR-16 precursor sequence. The effects of ectopic expression of miR-16 on breast cancer phenotype were examined by cell cycle analysis and apoptosis assays. miR-16 cytotoxicity effect was measured by the MTT assay. We showed that the miR-16 overexpression reduces Cyclin D1 and BCL2 at messenger RNA (mRNA) and protein levels in MCF-7 cell line. In addition, this is found that enforced expression of miR-16 decreases cell growth and proliferation and induces apoptosis in MCF-7 cells. In conclusion, our results revealed that upregulation of miR-16 would be a potential approach for breast cancer therapy. © 2015, The Society for In Vitro Biology

    Preliminary Study on Benzoic Acid Adsorption From Crude Active Coals and Bentonite

    Get PDF
    We studied the adsorption of pollutant benzoic acid by the modified bentonite of Maghnia (west of Algeria), and coal (Coal from the mines, southwest of Algeria, Bechar area) under three forms, crude and activated. Kinetic data show that the balance of bentonite (as amended) adsorbs organic acids better than activated and raw coal. Indeed, the intercalation of bentonite with benzoic acid causes an improvement in the texture of porous material, which allows its use in the adsorption of organic compounds. The adsorption isotherms (Langmuir and Freundlich) indicate that the adsorption of benzoic acid by the coal and bentonite yielded results favorably. The results obtained showed the practical value of using the activated coal and bentonite (as amended) in the field of remediation of water contaminated with organic pollutant

    Quantitative and Qualitative Detection of Vitamin C in Some Foods by Immobilized Ascorbate Oxidase

    Get PDF
    The use of ascorbate oxidase immobilized with glass-alginate gel beads led to immobilized 93% of the enzyme original amount, the optimum pH of immobilized enzyme was 5.5, and it was stable at 5-6, but it loses 63% from its original activity at pH 7, while the optimum temperature was 4

    MicroRNA-129-1 acts as tumour suppressor and induces cell cycle arrest of GBM cancer cells through targeting IGF2BP3 and MAPK1

    Get PDF
    Background MicroRNA-129-1 (miR-129-1) seems to behave as a tumour suppressor since its decreased expression is associated with different tumours such as glioblastoma multiforme (GBM). GBM is the most common form of brain tumours originating from glial cells. The impact of miR-129-1 downregulation on GBM pathogenesis has yet to be elucidated. Methods MiR-129-1 was overexpressed in GBM cells, and its effect on proliferation was investigated by cell cycle assay. MiR-129-1 predicted targets (CDK6, IGF1, HDAC2, IGF2BP3 and MAPK1) were also evaluated by western blot and luciferase assay. Results Restoration of miR-129-1 reduced cell proliferation and induced G1 accumulation, significantly. Several functional assays confirmed IGF2BP3, MAPK1 and CDK6 as targets of miR-129-1. Despite the fact that IGF1 expression can be suppressed by miR-129-1, through 30-untranslated region complementary sequence, we could not find any association between IGF1 expression and GBM. MiR-129-1 expression inversely correlates with CDK6, IGF2BP3 and MAPK1 in primary clinical samples. Conclusion This is the first study to propose miR129-1 as a negative regulator of IGF2BP3 and MAPK1 and also a cell cycle arrest inducer in GBM cells. Our data suggests miR-129-1 as a potential tumour suppressor and presents a rationale for the use of miR-129-1 as a novel strategy to improve treatment response in GBM
    corecore