6,743 research outputs found
Aquarium dermatitis: Cercarial dermatitis in an aquarist
A 33-year-old man presented with very itchy red papules on the back of his hands and forearms. These papules appeared about 90 min after he had cleaned his aquarium in which he kept native fish and watersnails. He had obtained the watersnails some weeks before from a nearby pond. Examination of water from the aquarium revealed cercariae. The clinical diagnosis of cercarial dermatitis was corroborated. Cercarial dermatitis has repeatedly been seen in swimmers but not in aquarists keeping fish in a home aquarium
Cutting Edge : Failure of Antigen-Specific CD4+ T Cell Recruitment to the Kidney during Systemic Candidiasis
Copyright © 2014 The Authors. Acknowledgments We thank E. Bolton and H. Bagavant for reagents and advice. We also acknowledge the staff of the Medical Research Facility at the University of Aberdeen for care of the animals used in this study. This work was supported by the Medical Research Council and the Wellcome Trust.Peer reviewedPublisher PD
HST/STIS Optical Transit Transmission Spectra of the hot-Jupiter HD209458b
We present the transmission spectra of the hot-Jupiter HD209458b taken with
the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope. Our
analysis combines data at two resolutions and applies a complete pixel-by-pixel
limb-darkening correction to fully reveal the spectral line shapes of
atmospheric absorption features. Terrestrial-based Na I and H I contamination
are identified which mask the strong exoplanetary absorption signature in the
Na core, which we find reaches total absorption levels of ~0.11% in a 4.4 Ang
band. The Na spectral line profile is characterized by a wide absorption
profile at the lowest absorption depths, and a sharp transition to a narrow
absorption profile at higher absorption values. The transmission spectra also
shows the presence of an additional absorber at ~6,250 Ang, observed at both
medium and low resolutions. We performed various limb-darkening tests,
including using high precision limb-darkening measurements of the sun to
characterize a general trend of Atlas models to slightly overestimate the
amount of limb-darkening at all wavelengths, likely due to the limitations of
the model's one-dimensional nature. We conclude that, despite these
limitations, Atlas models can still successfully model limb-darkening in high
signal-to-noise transits of solar-type stars, like HD209458, to a high level of
precision over the entire optical regime (3,000-10,000 Ang) at transit phases
between 2nd and 3rd contact.Comment: 18 pages, 11 figures, Accepted to Ap
Transonic cascade flow calculations using non-periodic C-type grids
A new kind of C-type grid is proposed for turbomachinery flow calculations. This grid is nonperiodic on the wake and results in minimum skewness for cascades with high turning and large camber. Euler and Reynolds averaged Navier-Stokes equations are discretized on this type of grid using a finite volume approach. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. Jameson's explicit Runge-Kutta scheme is adopted for the integration in time, and computational efficiency is achieved through accelerating strategies such as multigriding and residual smoothing. A detailed numerical study was performed for a turbine rotor and for a vane. A grid dependence analysis is presented and the effect of artificial dissipation is also investigated. Comparison of calculations with experiments clearly demonstrates the advantage of the proposed grid
Center for Modeling of Turbulence and Transition (CMOTT). Research briefs: 1990
Brief progress reports of the Center for Modeling of Turbulence and Transition (CMOTT) research staff from May 1990 to May 1991 are given. The objectives of the CMOTT are to develop, validate, and implement the models for turbulence and boundary layer transition in the practical engineering flows. The flows of interest are three dimensional, incompressible, and compressible flows with chemistry. The schemes being studied include the two-equation and algebraic Reynolds stress models, the full Reynolds stress (or second moment closure) models, the probability density function models, the Renormalization Group Theory (RNG) and Interaction Approximation (DIA), the Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS)
Marginalising instrument systematics in HST WFC3 transit lightcurves
Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations
at 1.1-1.7m probe primarily the HO absorption band at 1.4m, and
has provided low resolution transmission spectra for a wide range of
exoplanets. We present the application of marginalisation based on Gibson
(2014) to analyse exoplanet transit lightcurves obtained from HST WFC3, to
better determine important transit parameters such as R/R, important
for accurate detections of HO. We approximate the evidence, often referred
to as the marginal likelihood, for a grid of systematic models using the Akaike
Information Criterion (AIC). We then calculate the evidence-based weight
assigned to each systematic model and use the information from all tested
models to calculate the final marginalised transit parameters for both the
band-integrated, and spectroscopic lightcurves to construct the transmission
spectrum. We find that a majority of the highest weight models contain a
correction for a linear trend in time, as well as corrections related to HST
orbital phase. We additionally test the dependence on the shift in spectral
wavelength position over the course of the observations and find that
spectroscopic wavelength shifts , best describe the
associated systematic in the spectroscopic lightcurves for most targets, while
fast scan rate observations of bright targets require an additional level of
processing to produce a robust transmission spectrum. The use of
marginalisation allows for transparent interpretation and understanding of the
instrument and the impact of each systematic evaluated statistically for each
dataset, expanding the ability to make true and comprehensive comparisons
between exoplanet atmospheres.Comment: 19 pages, 13 figures, 8 tables, Accepted to Ap
Gran Telescopio Canarias OSIRIS Transiting Exoplanet Atmospheric Survey: Detection of potassium in XO-2b from narrowband spectrophotometry
We present Gran Telescopio Canarias (GTC) optical transit narrow-band
photometry of the hot-Jupiter exoplanet XO-2b using the OSIRIS instrument. This
unique instrument has the capabilities to deliver high cadence narrow-band
photometric lightcurves, allowing us to probe the atmospheric composition of
hot Jupiters from the ground. The observations were taken during three transit
events which cover four wavelengths at spectral resolutions near 500, necessary
for observing atmospheric features, and have near-photon limited sub-mmag
precisions. Precision narrow-band photometry on a large aperture telescope
allows for atmospheric transmission spectral features to be observed for
exoplanets around much fainter stars than those of the well studied targets
HD209458b and HD189733b, providing access to the majority of known transiting
planets. For XO-2b, we measure planet-to-star radius contrasts of
R_pl/R_star=0.10508+/-0.00052 at 6792 Ang, 0.10640+/-0.00058 at 7582 Ang, and
0.10686+/-0.00060 at 7664.9 Ang, and 0.10362+/-0.00051 at 8839 Ang. These
measurements reveal significant spectral features at two wavelengths, with an
absorption level of 0.067+/-0.016% at 7664.9 Ang due to atmospheric potassium
in the line core (a 4.1-sigma significance level), and an absorption level of
0.058+/-0.016% at 7582 Ang, (a 3.6-sigma significance level). When comparing
our measurements to hot-Jupiter atmospheric models, we find good agreement with
models which are dominated in the optical by alkali metals. This is the first
evidence for potassium in an extrasolar planet, an element that has long been
theorized along with sodium to be a dominant source of opacity at optical
wavelengths for hot Jupiters.Comment: 11 pages, 6 figures, accepted in A&A, minor changes to wording,
primarily section 4.2, and the title has also been slightly modifie
Numerical simulations of three-dimensional laminar flow over a backward facing step; flow near side walls
This paper reports the results of numerical simulations of steady, laminar flow over a backward-facing step. The governing equations used in the simulations are the full 'compressible' Navier-Stokes equations, solutions to which were computed by using a cell-centered, finite volume discretization. The convection terms of the governing equations were discretized by using the Advection Upwind Splitting Method (AUSM), whereas the diffusion terms were discretized using central differencing formulas. The validity and accuracy of the numerical solutions were verified by comparing the results to existing experimental data for flow at identical Reynolds numbers in the same back step geometry. The paper focuses attention on the details of the flow field near the side wall of the geometry
Corrigendum to "The upper atmosphere of the exoplanet HD209458b revealed by the sodium D lines: Temperature-pressure profile, ionization layer and thermosphere" [2011, A&A, 527, A110]
An error was detected in the code used for the analysis of the HD209458b
sodium profile (Vidal-Madjar et al. 2011). Here we present an updated T-P
profile and briefly discuss the consequences.Comment: Published in Astronomy & Astrophysics, 533, C
- …
