115 research outputs found

    A self-consistent treatment of non-equilibrium spin torques in magnetic multilayers

    Full text link
    It is known that the transfer of spin angular momenta between current carriers and local moments occurs near the interface of magnetic layers when their moments are non-collinear. However, to determine the magnitude of the transfer, one should calculate the spin transport properties far beyond the interface regions. Based on the spin diffusion equation, we present a self-consistent approach to evaluate the spin torque for a number of layered structures. One of the salient features is that the longitudinal and transverse components of spin accumulations are inter-twined from one layer to the next, and thus, the spin torque could be significantly amplified with respect to treatments which concentrate solely on the transport at the interface due to the presence of the much longer longitudinal spin diffusion length. We conclude that bare spin currents do not properly estimate the spin angular momentum transferred between to the magnetic background; the spin transfer that occurs at interfaces should be self-consistently determined by embedding it in our globally diffuse transport calculations.Comment: 21 pages, 6 figure

    Magnetization reversal by injection and transfer of spin: experiments and theory

    Full text link
    Reversing the magnetization of a ferromagnet by spin transfer from a current, rather than by applying a magnetic field, is the central idea of an extensive current research. After a review of our experiments of current-induced magnetization reversal in Co/Cu/Co trilayered pillars, we present the model we have worked out for the calculation of the current-induced torque and the interpretation of the experiments

    Theory of Current-Induced Magnetization Precession

    Full text link
    We solve appropriate drift-diffusion and Landau-Lifshitz-Gilbert equations to demonstrate that unpolarized current flow from a non-magnet into a ferromagnet can produce a precession-type instability of the magnetization. The fundamental origin of the instability is the difference in conductivity between majority spins and minority spins in the ferromagnet. This leads to spin accumulation and spin currents that carry angular momentum across the interface. The component of this angular momentum perpendicular to the magnetization drives precessional motion that is opposed by Gilbert damping. Neglecting magnetic anisotropy and magnetostatics, our approximate analytic and exact numerical solutions using realistic values for the material parameters show (for both semi-infinite and thin film geometries) that a linear instability occurs when both the current density and the excitation wave vector parallel to the interface are neither too small nor too large. For many aspects of the problem, the variation of the magnetization in the direction of the current flows makes an important contribution.Comment: Submitted to Physical Review

    The hVPS34-SGK3 pathway counteracts inhibition of the PI3K-Akt to maintain mTORC1 and tumour growth

    Get PDF
    We explore mechanisms that enable cancer cells to tolerate PI3K or Akt inhibitors. Prolonged treatment of breast cancer cells with PI3K or Akt inhibitors leads to increased expression and activation of a kinase termed SGK3 that is related to Akt. Under these conditions, SGK3 is controlled by hVps34 that generates PtdIns(3)P, which binds to the PX domain of SGK3 promoting phosphorylation and activation by its upstream PDK1 activator. Furthermore, under conditions of prolonged PI3K/Akt pathway inhibition, SGK3 substitutes for Akt by phosphorylating TSC2 to activate mTORC1. We characterise 14h, a compound that inhibits both SGK3 activity and activation in vivo, and show that a combination of Akt and SGK inhibitors induced marked regression of BT‐474 breast cancer cell‐derived tumours in a xenograft model. Finally, we present the kinome‐wide analysis of mRNA expression dynamics induced by PI3K/Akt inhibition. Our findings highlight the importance of the hVps34‐SGK3 pathway and suggest it represents a mechanism to counteract inhibition of PI3K/Akt signalling. The data support the potential of targeting both Akt and SGK as a cancer therapeutic

    Layer thickness dependence of the current induced effective field vector in Ta|CoFeB|MgO

    Full text link
    The role of current induced effective magnetic field in ultrathin magnetic heterostructures is increasingly gaining interest since it can provide efficient ways of manipulating magnetization electrically. Two effects, known as the Rashba spin orbit field and the spin Hall spin torque, have been reported to be responsible for the generation of the effective field. However, quantitative understanding of the effective field, including its direction with respect to the current flow, is lacking. Here we show vector measurements of the current induced effective field in Ta|CoFeB|MgO heterostructrures. The effective field shows significant dependence on the Ta and CoFeB layers' thickness. In particular, 1 nm thickness variation of the Ta layer can result in nearly two orders of magnitude difference in the effective field. Moreover, its sign changes when the Ta layer thickness is reduced, indicating that there are two competing effects that contribute to the effective field. The relative size of the effective field vector components, directed transverse and parallel to the current flow, varies as the Ta thickness is changed. Our results illustrate the profound characteristics of just a few atomic layer thick metals and their influence on magnetization dynamics

    Influence of a Uniform Current on Collective Magnetization Dynamics in a Ferromagnetic Metal

    Get PDF
    We discuss the influence of a uniform current, j\vec{j} , on the magnetization dynamics of a ferromagnetic metal. We find that the magnon energy ϵ(q)\epsilon(\vec{q}) has a current-induced contribution proportional to qJ\vec{q}\cdot \vec{\cal J}, where J\vec{\cal J} is the spin-current, and predict that collective dynamics will be more strongly damped at finite j{\vec j}. We obtain similar results for models with and without local moment participation in the magnetic order. For transition metal ferromagnets, we estimate that the uniform magnetic state will be destabilized for j109Acm2j \gtrsim 10^{9} {\rm A} {\rm cm}^{-2}. We discuss the relationship of this effect to the spin-torque effects that alter magnetization dynamics in inhomogeneous magnetic systems.Comment: 12 pages, 2 figure

    Current-Driven Magnetization Dynamics in Magnetic Multilayers

    Full text link
    We develop a quantum analog of the classical spin-torque model for current-driven magnetic dynamics. The current-driven magnetic excitation at finite field becomes significantly incoherent. This excitation is described by an effective magnetic temperature rather than a coherent precession as in the spin-torque model. However, both the spin-torque and effective temperature approximations give qualitatively similar switching diagrams in the current-field coordinates, showing the need for detailed experiments to establish the proper physical model for current-driven dynamics.Comment: 5 pages, 2 figure
    corecore