421 research outputs found

    Unmasking the Active Galactic Nucleus in PKS J2310-437

    Full text link
    PKS J2310-437 is an AGN with bright X-ray emission relative to its weak radio emission and optical continuum. It is believed that its jet lies far enough from the line of sight that it is not highly relativistically beamed. It thus provides an extreme test of AGN models. We present new observations aimed at refining the measurement of the source's properties. In optical photometry with the NTT we measure a central excess with relatively steep spectrum lying above the bright elliptical galaxy emission, and we associate the excess wholly or in part with the AGN. A new full-track radio observation with the ATCA finds that the core 8.64GHz emission has varied by about 20 per cent over 38 months, and improves the mapping of the weak jet. With Chandra we measure a well-constrained power-law spectral index for the X-ray core, uncontaminated by extended emission from the cluster environment, with a negligible level of intrinsic absorption. Weak X-ray emission from the resolved radio jet is also measured. Our analysis suggests that the optical continuum in this radio galaxy has varied by at least a factor of four over a timescale of about two years, something that should be testable with further observations. We conclude that the most likely explanation for the bright central X-ray emission is synchrotron radiation from high-energy electrons.Comment: 7 pages, 12 figure

    Sersiclets - A Matched Filter Extension of Shapelets for Weak Lensing Studies

    Full text link
    The precision study of dark matter using weak lensing by large scale structure is strongly constrained by the accuracy with which one can measure galaxy shapes. Several methods have been devised but none have demonstrated the ability to reach the level of precision required by future weak lensing surveys. In this Letter we explore new avenues to the existing Shapelets approach, combining a priori knowledge of the galaxy profile with the power of orthogonal basis function decomposition. This Letter discusses the new issues raised by this matched filter approach and proposes promising alternatives to shape measurement techniques. In particular it appears that the use of a matched filter (e.g. Sersic profile) restricted to elliptical radial fitting functions resolves several well known Shapelet issues.Comment: 6 pages, 6 figures. MNRAS Accepte

    Limitations for shapelet-based weak-lensing measurements

    Full text link
    We seek to understand the impact on shape estimators obtained from circular and elliptical shapelet models under two realistic conditions: (a) only a limited number of shapelet modes is available for the model, and (b) the intrinsic galactic shapes are not restricted to shapelet models. We create a set of simplistic simulations, in which the galactic shapes follow a Sersic profile. By varying the Sersic index and applied shear, we quantify the amount of bias on shear estimates which arises from insufficient modeling. Additional complications due to PSF convolution, pixelation and pixel noise are also discussed. Steep and highly elliptical galaxy shapes cannot be accurately modeled within the circular shapelet basis system and are biased towards shallower and less elongated shapes. This problem can be cured partially by allowing elliptical basis functions, but for steep profiles elliptical shapelet models still depend critically on accurate ellipticity priors. As a result, shear estimates are typically biased low. Independently of the particular form of the estimator, the bias depends on the true intrinsic galaxy morphology, but also on the size and shape of the PSF. As long as the issues discussed here are not solved, the shapelet method cannot provide weak-lensing measurements with an accuracy demanded by upcoming missions and surveys, unless one can provide an accurate and reliable calibration, specific for the dataset under investigation.Comment: 8 pages, 5 figures, submitted to A&

    Velocidades radiales de galaxias australes

    Get PDF
    Se informa sobre el estado de avance del programa de velocidades radiales de galaxias con el Espectrógrafo Nebular de Page.Asociación Argentina de Astronomí

    Curvas de rotación en galaxias australes

    Get PDF
    Se dan los resultados del análisis de las curvas de rotación de 9 galaxias obtenidas con el Espectrógrafo Rápido Page y tubo de imágenes en Bosque Alegre. Se estiman masas y densidades.Asociación Argentina de Astronomí

    The dramatic size evolution of elliptical galaxies and the quasar feedback

    Get PDF
    Observations have evidenced that passively evolving massive galaxies at high redshift are much more compact than local galaxies with the same stellar mass. We argue that the observed strong evolution in size is directly related to the quasar feedback, which removes huge amounts of cold gas from the central regions in a Salpeter time, inducing an expansion of the stellar distribution. The new equilibrium configuration, with a size increased by a factor >~ 3, is attained after ~ 40 dynamical times, corresponding to ~ 2 Gyr. This means that massive galaxies observed at z >~ 1 will settle on the Fundamental Plane by z ~ 0.8-1. In less massive galaxies (M_star <~ 2 10^10 M_sun), the nuclear feedback is subdominant, and the mass loss is mainly due to stellar winds. In this case, the mass loss timescale is longer than the dynamical time and results in adiabatic expansion that may increase the effective radius by a factor of up to ~ 2 in 10 Gyr, although a growth by a factor of ~ 1.6 occurs within the first 0.5 Gyr. Since observations are focused on relatively old galaxies, with ages >~ 1 Gyr, the evolution for smaller galaxies is more difficult to perceive. Significant evolution of velocity dispersion is predicted for both small and large galaxies.Comment: 4 pages, 2 figures, uses REVTeX4 + emulateapj.cls and apjfonts.sty. Accepted by ApJ

    Mild Velocity Dispersion Evolution of Spheroid-like Massive Galaxies since z~2

    Full text link
    Making use of public spectra from Cimatti et al (2008), we measure for the first time the velocity dispersion of spheroid-like massive (M_star ~ 10^11 M_sun) galaxies at z ~ 1.6. By comparing with galaxies of similar stellar mass at lower redshifts, we find evidence for a mild evolution in velocity dispersion, decreasing from ~240 km/s at z ~ 1.6 down to ~180 km/s at z ~ 0. Such mild evolution contrasts with the strong change in size (a factor of ~4) found for these type of objects in the same cosmic time, and it is consistent with a progressive larger role, at lower redshift, of the dark matter halo in setting the velocity dispersion of these galaxies. We discuss the implications of our results within the context of different scenarios proposed for the evolution of these massive objects.Comment: 5 pages, 2 Figures. Accepted in ApJL. Minor changes from former submissio

    Smooth HI Low Column Density Outskirts In Nearby Galaxies

    Get PDF
    This is an author-created, un-copyedited version of an article published in The Astronomical Journal. The Version of Record is available online at https://doi.org/10.3847/1538-3881/aabbaa.The low column density gas at the outskirts of galaxies as traced by the 21 cm hydrogen line emission (H i) represents the interface between galaxies and the intergalactic medium, i.e., where galaxies are believed to get their supply of gas to fuel future episodes of star formation. Photoionization models predict a break in the radial profiles of H i at a column density of ∼5 × 10 19 cm -2 due to the lack of self-shielding against extragalactic ionizing photons. To investigate the prevalence of such breaks in galactic disks and to characterize what determines the potential edge of the H i disks, we study the azimuthally averaged H i column density profiles of 17 nearby galaxies from the H i Nearby Galaxy Survey and supplemented in two cases with published Hydrogen Accretion in LOcal GAlaxieS data. To detect potential faint H i emission that would otherwise be undetected using conventional moment map analysis, we line up individual profiles to the same reference velocity and average them azimuthally to derive stacked radial profiles. To do so, we use model velocity fields created from a simple extrapolation of the rotation curves to align the profiles in velocity at radii beyond the extent probed with the sensitivity of traditional integrated H i maps. With this method, we improve our sensitivity to outer-disk H i emission by up to an order of magnitude. Except for a few disturbed galaxies, none show evidence of a sudden change in the slope of the H i radial profiles: the alleged signature of ionization by the extragalactic background.Peer reviewedFinal Accepted Versio

    New Approaches To Photometric Redshift Prediction Via Gaussian Process Regression In The Sloan Digital Sky Survey

    Full text link
    Expanding upon the work of Way and Srivastava 2006 we demonstrate how the use of training sets of comparable size continue to make Gaussian process regression (GPR) a competitive approach to that of neural networks and other least-squares fitting methods. This is possible via new large size matrix inversion techniques developed for Gaussian processes (GPs) that do not require that the kernel matrix be sparse. This development, combined with a neural-network kernel function appears to give superior results for this problem. Our best fit results for the Sloan Digital Sky Survey (SDSS) Main Galaxy Sample using u,g,r,i,z filters gives an rms error of 0.0201 while our results for the same filters in the luminous red galaxy sample yield 0.0220. We also demonstrate that there appears to be a minimum number of training-set galaxies needed to obtain the optimal fit when using our GPR rank-reduction methods. We find that morphological information included with many photometric surveys appears, for the most part, to make the photometric redshift evaluation slightly worse rather than better. This would indicate that most morphological information simply adds noise from the GP point of view in the data used herein. In addition, we show that cross-match catalog results involving combinations of the Two Micron All Sky Survey, SDSS, and Galaxy Evolution Explorer have to be evaluated in the context of the resulting cross-match magnitude and redshift distribution. Otherwise one may be misled into overly optimistic conclusions.Comment: 32 pages, ApJ in Press, 2 new figures, 1 new table of comparison methods, updated discussion, references and typos to reflect version in Pres

    A comparison of the strong lensing properties of the Sersic and the NFW profiles

    Full text link
    We investigate the strong lensing properties of the Sersic profile as an alternative to the NFW profile, focusing on applications to lens modelling of clusters. Given an underlying Sersic dark matter profile, we study whether an NFW profile can provide an acceptable fit to strong lensing constraints in the form of single or multiple measured Einstein radii. We conclude that although an NFW profile that fits the lensing constraints can be found in many cases, the derived parameters may be biased. In particular, we find that for n~2, which corresponds to massive clusters, the mass at r_200 of the best fit NFW is overestimated (by a factor of ~2) and the concentration is very low (c~2). The differences are important enough to warrant the inclusion of Sersic profile for future analysis of strong lensing clusters.Comment: 19 pages (single column format), 11 figures. Accepted for publication by JCA
    corecore