62 research outputs found

    Effect of Aspartame-Derived Phenylalanine on Neutral Amino Acid Uptake in Human Brain: A Positron Emission Tomography Study

    Full text link
    The possible effects of elevation of the plasma phe-nylalanine level secondary to the ingestion of aspartame on brain amino acid uptake in human subjects have been investigated by means of positron emission tomography (PET). 1-[ 11 C]Aminocyclohexanecarboxylate ([ 11 C]ACHC) is a poorly metabolized synthetic amino acid that crosses the blood-brain barrier by the same carrier that transports naturally occurring large neutral amino acids. Quantitative test-retest PET studies were performed on 15 individuals. Seven received two identical baseline scans, whereas eight received a baseline scan followed by a scan performed ∼40–45 min following ingestion of an orange-flavored beverage containing 34 mg/kg of body weight of the low-calorie sweetener aspartame, a dose equivalent to the amount in 5 L of diet soft drink consumed all at once by the study subjects, weighing an average of 76 kg. The 40–45-min interval was selected to maximize the detection of possible decreases in ACHC uptake resulting from increased competition for the carrier, because the plasma phenylalanine level is known to peak at this time. We observed an 11.5% decrease in the amino acid transport rate constant Kt and a smaller decrease in the tissue distribution volume of ACHC (6%). Under conditions of normal dietary use, aspartame is thus unlikely to cause changes in brain amino acid uptake that are measurable by PET.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65668/1/j.1471-4159.1991.tb02047.x.pd

    Global Self-Organization of the Cellular Metabolic Structure

    Get PDF
    Background: Over many years, it has been assumed that enzymes work either in an isolated way, or organized in small catalytic groups. Several studies performed using "metabolic networks models'' are helping to understand the degree of functional complexity that characterizes enzymatic dynamic systems. In a previous work, we used "dissipative metabolic networks'' (DMNs) to show that enzymes can present a self-organized global functional structure, in which several sets of enzymes are always in an active state, whereas the rest of molecular catalytic sets exhibit dynamics of on-off changing states. We suggested that this kind of global metabolic dynamics might be a genuine and universal functional configuration of the cellular metabolic structure, common to all living cells. Later, a different group has shown experimentally that this kind of functional structure does, indeed, exist in several microorganisms. Methodology/Principal Findings: Here we have analyzed around 2.500.000 different DMNs in order to investigate the underlying mechanism of this dynamic global configuration. The numerical analyses that we have performed show that this global configuration is an emergent property inherent to the cellular metabolic dynamics. Concretely, we have found that the existence of a high number of enzymatic subsystems belonging to the DMNs is the fundamental element for the spontaneous emergence of a functional reactive structure characterized by a metabolic core formed by several sets of enzymes always in an active state. Conclusions/Significance: This self-organized dynamic structure seems to be an intrinsic characteristic of metabolism, common to all living cellular organisms. To better understand cellular functionality, it will be crucial to structurally characterize these enzymatic self-organized global structures.Supported by the Spanish Ministry of Science and Education Grants MTM2005-01504, MTM2004-04665, partly with FEDER funds, and by the Basque Government, Grant IT252-07

    Nonuniform Cardiac Denervation Observed by 11C-meta-Hydroxyephedrine PET in 6-OHDA-Treated Monkeys

    Get PDF
    Parkinson's disease presents nonmotor complications such as autonomic dysfunction that do not respond to traditional anti-parkinsonian therapies. The lack of established preclinical monkey models of Parkinson's disease with cardiac dysfunction hampers development and testing of new treatments to alleviate or prevent this feature. This study aimed to assess the feasibility of developing a model of cardiac dysautonomia in nonhuman primates and preclinical evaluations tools. Five rhesus monkeys received intravenous injections of 6-hydroxydopamine (total dose: 50 mg/kg). The animals were evaluated before and after with a battery of tests, including positron emission tomography with the norepinephrine analog 11C-meta-hydroxyephedrine. Imaging 1 week after neurotoxin treatment revealed nearly complete loss of specific radioligand uptake. Partial progressive recovery of cardiac uptake found between 1 and 10 weeks remained stable between 10 and 14 weeks. In all five animals, examination of the pattern of uptake (using Logan plot analysis to create distribution volume maps) revealed a persistent region-specific significant loss in the inferior wall of the left ventricle at 10 (P<0.001) and 14 weeks (P<0.01) relative to the anterior wall. Blood levels of dopamine, norepinephrine (P<0.05), epinephrine, and 3,4-dihydroxyphenylacetic acid (P<0.01) were notably decreased after 6-hydroxydopamine at all time points. These results demonstrate that systemic injection of 6-hydroxydopamine in nonhuman primates creates a nonuniform but reproducible pattern of cardiac denervation as well as a persistent loss of circulating catecholamines, supporting the use of this method to further develop a monkey model of cardiac dysautonomia

    On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.

    Get PDF
    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life

    Ion channel clustering enhances weak electric field detection by neutrophils: apparent roles of SKF96365-sensitive cation channels and myeloperoxidase trafficking in cellular responses

    Full text link
    We have tested Galvanovskis and Sandblom’s prediction that ion channel clustering enhances weak electric field detection by cells as well as how the elicited signals couple to metabolic alterations. Electric field application was timed to coincide with certain known intracellular chemical oscillators (phase-matched conditions). Polarized, but not spherical, neutrophils labeled with anti-K v 1.3, FL-DHP, and anti-TRP1, but not anti-T-type Ca 2+ channels, displayed clusters at the lamellipodium. Resonance energy transfer experiments showed that these channel pairs were in close proximity. Dose-field sensitivity studies of channel blockers suggested that K + and Ca 2+ channels participate in field detection, as judged by enhanced oscillatory NAD(P)H amplitudes. Further studies suggested that K + channel blockers act by reducing the neutrophil’s membrane potential. Mibefradil and SKF93635, which block T-type Ca 2+ channels and SOCs, respectively, affected field detection at appropriate doses. Microfluorometry and high-speed imaging of indo-1-labeled neutrophils was used to examine Ca 2+ signaling. Electric fields enhanced Ca 2+ spike amplitude and triggered formation of a second traveling Ca 2+ wave. Mibefradil blocked Ca 2+ spikes and waves. Although 10 μM SKF96365 mimicked mibefradil, 7 μM SKF96365 specifically inhibited electric field-induced Ca 2+ signals, suggesting that one SKF96365-senstive site is influenced by electric fields. Although cells remained morphologically polarized, ion channel clusters at the lamellipodium and electric field sensitivity were inhibited by methyl-β-cyclodextrin. As a result of phase-matched electric field application in the presence of ion channel clusters, myeloperoxidase (MPO) was found to traffic to the cell surface. As MPO participates in high amplitude metabolic oscillations, this suggests a link between the signaling apparatus and metabolic changes. Furthermore, electric field effects could be blocked by MPO inhibition or removal while certain electric field effects were mimicked by the addition of MPO to untreated cells. Therefore, channel clustering plays an important role in electric field detection and downstream responses of morphologically polarized neutrophils. In addition to providing new mechanistic insights concerning electric field interactions with cells, our work suggests novel methods to remotely manipulate physiological pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46726/1/249_2005_Article_1.pd

    Interferon-gamma and sinusoidal electric fields signal by modulating NAD(P)H oscillations in polarized neutrophils.

    Get PDF
    Metabolic activity in eukaryotic cells is known to naturally oscillate. We have recently observed a 20-s period NAD(P)H oscillation in neutrophils and other polarized cells. Here we show that when polarized human neutrophils are exposed to interferon-gamma or to ultra-low-frequency electric fields with periods double that of the NAD(P)H oscillation, the amplitude of the NAD(P)H oscillations increases. Furthermore, increases in NAD(P)H amplitude, whether mediated by interferon-gamma or by an oscillating electric field, signals increased production of reactive oxygen metabolites. Hence, amplitude modulation of NAD(P)H oscillations suggests a novel signaling mechanism in polarized cells

    Proteomics data for "Mercury alters endogenous phosphorylation profiles of SYK in murine B cells.

    No full text
    Supplementary proteomics data. Search results for LC/MS/MS experiments are in the form of Scaffold files (a free viewer can be downloaded from http://www.proteomesoftware.com/products/scaffold/download/). These data identified phosphorylation sites of murine SYK protein in WEHI cells treated with either inorganic mercury (Hg), pervanadate (PV), or BCR activating antibody (Ab). Raw data for quantitation of SYK phosphorylation status of selected sites were obtained using multiple reaction monitoring (MRM) on a TSQ triple quadrupole mass spectrometer. Detailed parameters including peptide and fragment mass lists can be found in the Methods section

    Mercury Alters B‑Cell Protein Phosphorylation Profiles

    No full text
    Environmental exposure to mercury is suggested to contribute to human immune dysfunction. To shed light on the mechanism, we identified changes in the phosphoproteomic profile of the WEHI-231 B cell line after intoxication with Hg<sup>2+</sup>. These changes were compared to changes in the phosphoproteome that were induced by pervanadate or okadaic acid exposure. Both 250 μM HgCl<sub>2</sub> and pervanadate, a known phosphotyrosine phosphatase inhibitor, caused an increase in the number of proteins identified after TiO<sub>2</sub> affinity selection and LC-MS/MS analysis. Pervanadate treatment had a larger effect than Hg<sup>2+</sup> on the number of Scansite motifs that were tyrosine-phosphorylated, 17, and Ingenuity canonical signaling pathways activated, 4, with score >5.0. However, Hg<sup>2+</sup> had a more focused effect, primarily causing tyrosine-phosphorylation in src homology 2 domains in proteins that are in the B cell receptor signaling pathway. The finding that many of the changes induced by Hg<sup>2+</sup> overlap with those of pervanadate, indicates that at high concentrations Hg<sup>2+</sup> inhibits protein tyrosine phosphatases

    Mercury Alters B‑Cell Protein Phosphorylation Profiles

    No full text
    Environmental exposure to mercury is suggested to contribute to human immune dysfunction. To shed light on the mechanism, we identified changes in the phosphoproteomic profile of the WEHI-231 B cell line after intoxication with Hg<sup>2+</sup>. These changes were compared to changes in the phosphoproteome that were induced by pervanadate or okadaic acid exposure. Both 250 μM HgCl<sub>2</sub> and pervanadate, a known phosphotyrosine phosphatase inhibitor, caused an increase in the number of proteins identified after TiO<sub>2</sub> affinity selection and LC-MS/MS analysis. Pervanadate treatment had a larger effect than Hg<sup>2+</sup> on the number of Scansite motifs that were tyrosine-phosphorylated, 17, and Ingenuity canonical signaling pathways activated, 4, with score >5.0. However, Hg<sup>2+</sup> had a more focused effect, primarily causing tyrosine-phosphorylation in src homology 2 domains in proteins that are in the B cell receptor signaling pathway. The finding that many of the changes induced by Hg<sup>2+</sup> overlap with those of pervanadate, indicates that at high concentrations Hg<sup>2+</sup> inhibits protein tyrosine phosphatases
    • …
    corecore