218 research outputs found

    Estimating the cumulative incidence of SARS-CoV-2 with imperfect serological tests: Exploiting cutoff-free approaches.

    Get PDF
    Large-scale serological testing in the population is essential to determine the true extent of the current SARS-CoV-2 pandemic. Serological tests measure antibody responses against pathogens and use predefined cutoff levels that dichotomize the quantitative test measures into sero-positives and negatives and use this as a proxy for past infection. With the imperfect assays that are currently available to test for past SARS-CoV-2 infection, the fraction of seropositive individuals in serosurveys is a biased estimator of the cumulative incidence and is usually corrected to account for the sensitivity and specificity. Here we use an inference method-referred to as mixture-model approach-for the estimation of the cumulative incidence that does not require to define cutoffs by integrating the quantitative test measures directly into the statistical inference procedure. We confirm that the mixture model outperforms the methods based on cutoffs, leading to less bias and error in estimates of the cumulative incidence. We illustrate how the mixture model can be used to optimize the design of serosurveys with imperfect serological tests. We also provide guidance on the number of control and case sera that are required to quantify the test's ambiguity sufficiently to enable the reliable estimation of the cumulative incidence. Lastly, we show how this approach can be used to estimate the cumulative incidence of classes of infections with an unknown distribution of quantitative test measures. This is a very promising application of the mixture-model approach that could identify the elusive fraction of asymptomatic SARS-CoV-2 infections. An R-package implementing the inference methods used in this paper is provided. Our study advocates using serological tests without cutoffs, especially if they are used to determine parameters characterizing populations rather than individuals. This approach circumvents some of the shortcomings of cutoff-based methods at exactly the low cumulative incidence levels and test accuracies that we are currently facing in SARS-CoV-2 serosurveys

    Correcting for Antibody Waning in Cumulative Incidence Estimation from Sequential Serosurveys.

    Get PDF
    Serosurveys are a widely used tool to estimate the cumulative incidence, i.e. the fraction of a population that have been infected by a given pathogen. These surveys rely on serological assays that measure the level of pathogen-specific antibodies. Because antibody levels are waning, the fraction of previously infected individuals that have sero-reverted increases with time past infection. To avoid underestimating the true cumulative incidence, it is therefore essential to correct for waning antibody levels. We present an empirically-supported approach for sero-reversion correction in cumulative incidence estimation when sequential serosurveys are conducted in the context of a newly emerging infectious disease. The correction is based on the observed dynamics of antibody titers in sero-positive cases and validated using several in silico test scenarios. Furthermore, through this approach we revise a previous cumulative incidence estimate, which relies on the assumption of an exponentially-declining probability of sero-reversion over time, of SARS-CoV-2 of 76% in Manaus, Brazil, by October 2020 to 47.6% (43.5% - 53.5%). This estimate has implications e.g. for the proximity to herd immunity in Manaus in late 2020

    Decomposing virulence to understand bacterial clearance in persistent infections

    Get PDF
    Following an infection, hosts cannot always clear the pathogen, instead either dying or surviving with a persistent infection. Such variation is ecologically and evolutionarily important because it can affect infection prevalence and transmission, and virulence evolution. However, the factors causing variation in infection outcomes, and the relationship between clearance and virulence are not well understood. Here we show that sustained persistent infection and clearance are both possible outcomes across bacterial species showing a range of virulence in Drosophila melanogaster. Variation in virulence arises because of differences in the two components of virulence: bacterial infection intensity inside the host (exploitation), and the amount of damage caused per bacterium (per parasite pathogenicity). As early-phase exploitation increased, clearance rates later in the infection decreased, whereas there was no apparent effect of per parasite pathogenicity on clearance rates. Variation in infection outcomes is thereby determined by how virulence – and its components – relate to the rate of pathogen clearance. Taken together we demonstrate that the virulence decomposition framework is broadly applicable and can provide valuable insights into host-pathogen interactions

    Revisiting Estimates of CTL Killing Rates In Vivo

    Get PDF
    Recent experimental advances have allowed the estimation of the in vivo rates of killing of infected target cells by cytotoxic T lymphocytes (CTL). We present several refinements to a method applied previously to quantify killing of targets in the spleen using a dynamical model. We reanalyse data previously used to estimate killing rates of CTL specific for two epitopes of lymphocytic choriomeningitis virus (LCMV) in mice and show that, contrary to previous estimates the “killing rate” of effector CTL is approximately twice that of memory CTL. Further, our method allows the fits to be visualized, and reveals one potentially interesting discrepancy between fits and data. We discuss extensions to the basic CTL killing model to explain this discrepancy and propose experimental tests to distinguish between them

    Protective Efficacy of Individual CD8+ T Cell Specificities in Chronic Viral Infection.

    Get PDF
    Specific CD8(+) T cells (CTLs) play an important role in resolving protracted infection with hepatitis B and C virus in humans and lymphocytic choriomeningitis virus (LCMV) in mice. The contribution of individual CTL specificities to chronic virus control, as well as epitope-specific patterns in timing and persistence of antiviral selection pressure, remain, however, incompletely defined. To monitor and characterize the antiviral efficacy of individual CTL specificities throughout the course of chronic infection, we coinoculated mice with a mixture of wild-type LCMV and genetically engineered CTL epitope-deficient mutant virus. A quantitative longitudinal assessment of viral competition revealed that mice continuously exerted CTL selection pressure on the persisting virus population. The timing of selection pressure characterized individual epitope specificities, and its magnitude varied considerably between individual mice. This longitudinal assessment of "antiviral efficacy" provides a novel parameter to characterize CTL responses in chronic viral infection. It demonstrates remarkable perseverance of all antiviral CTL specificities studied, thus raising hope for therapeutic vaccination in the treatment of persistent viral diseases

    COVID-19 infectivity profile correction

    Full text link
    The infectivity profile of an individual with COVID-19 is attributed to the paper Temporal dynamics in viral shedding and transmissibility of COVID-19 by He et al., published in Nature Medicine in April 2020. However, the analysis within this paper contains a mistake such that the published infectivity profile is incorrect and the conclusion that infectiousness begins 2.3 days before symptom onset is no longer supported. In this document we discuss the error and compute the correct infectivity profile. We also establish confidence intervals on this profile, quantify the difference between the published and the corrected profiles, and discuss an issue of normalisation when fitting serial interval data. This infectivity profile plays a central role in policy and decision making, thus it is crucial that this issue is corrected with the utmost urgency to prevent the propagation of this error into further studies and policies. We hope that this preprint will reach all researchers and policy makers who are using the incorrect infectivity profile to inform their work.Comment: 5 pages, 2 figure

    Number of HIV-1 founder variants is determined by the recency of the source partner infection

    Get PDF
    During sexual transmission, the high genetic diversity of HIV-1 within an individual is frequently reduced to one founder variant that initiates infection. Understanding the drivers of this bottleneck is crucial to developing effective infection control strategies. Little is known about the importance of the source partner during this bottleneck. To test the hypothesis that the source partner affects the number of HIV founder variants, we developed a phylodynamic model calibrated using genetic and epidemiological data on all existing transmission pairs for whom the direction of transmission and the infection stage of the source partner are known. Our results suggest that acquiring infection from someone in the acute (early) stage of infection increases the risk of multiple-founder variant transmission compared with acquiring infection from someone in the chronic (later) stage of infection. This study provides the first direct test of source partner characteristics to explain the low frequency of multiple-founder strain infections

    Spatial heterogeneity and peptide availability determine CTL killing efficiency in vivo

    Get PDF
    The rate at which a cytotoxic T lymphocyte (CTL) can survey for infected cells is a key ingredient of models of vertebrate immune responses to intracellular pathogens. Estimates have been obtained using in vivo cytotoxicity assays in which peptide-pulsed splenocytes are killed by CTL in the spleens of immunised mice. However the spleen is a heterogeneous environment and splenocytes comprise multiple cell types. Are some cell types intrinsically more susceptible to lysis than others? Quantitatively, what impacts are made by the spatial distribution of targets and effectors, and the level of peptide-MHC on the target cell surface? To address these questions we revisited the splenocyte killing assay, using CTL specific for an epitope of influenza virus. We found that at the cell population level T cell targets were killed more rapidly than B cells. Using modeling, quantitative imaging and in vitro killing assays we conclude that this difference in vivo likely reflects different migratory patterns of targets within the spleen and a heterogeneous distribution of CTL, with no detectable difference in the intrinsic susceptibilities of the two populations to lysis. Modeling of the stages involved in the detection and killing of peptide-pulsed targets in vitro revealed that peptide dose influenced the ability of CTL to form conjugates with targets but had no detectable effect on the probability that conjugation resulted in lysis, and that T cell targets took longer to lyse than B cells. We also infer that incomplete killing in vivo of cells pulsed with low doses of peptide may be due to a combination of heterogeneity in peptide uptake and the dissociation, but not internalisation, of peptide-MHC complexes. Our analyses demonstrate how population-averaged parameters in models of immune responses can be dissected to account for both spatial and cellular heterogeneity

    Priority Setting for Pandemic Influenza: An Analysis of National Preparedness Plans

    Get PDF
    The authors provide a targeted review of national pandemic influenza plans from the developed and developing world, describing national variations in prioritization of vaccines and antiviral medications

    CLASH: New Multiple-Images Constraining the Inner Mass Profile of MACS J1206.2-0847

    Get PDF
    We present a strong-lensing analysis of the galaxy cluster MACS J1206.2-0847 (zz=0.44) using UV, Optical, and IR, HST/ACS/WFC3 data taken as part of the CLASH multi-cycle treasury program, with VLT/VIMOS spectroscopy for some of the multiply-lensed arcs. The CLASH observations, combined with our mass-model, allow us to identify 47 new multiply-lensed images of 12 distant sources. These images, along with the previously known arc, span the redshift range 1\la z\la5.5, and thus enable us to derive a detailed mass distribution and to accurately constrain, for the first time, the inner mass-profile of this cluster. We find an inner profile slope of dlog⁥Σ/dlog⁡ξ≃−0.55±0.1d\log \Sigma/d\log \theta\simeq -0.55\pm 0.1 (in the range [1\arcsec, 53\arcsec], or 5\la r \la300 kpc), as commonly found for relaxed and well-concentrated clusters. Using the many systems uncovered here we derive credible critical curves and Einstein radii for different source redshifts. For a source at zs≃2.5z_{s}\simeq2.5, the critical curve encloses a large area with an effective Einstein radius of \theta_{E}=28\pm3\arcsec, and a projected mass of 1.34±0.15×1014M⊙1.34\pm0.15\times10^{14} M_{\odot}. From the current understanding of structure formation in concordance cosmology, these values are relatively high for clusters at z∌0.5z\sim0.5, so that detailed studies of the inner mass distribution of clusters such as MACS J1206.2-0847 can provide stringent tests of the Λ\LambdaCDM paradigm.Comment: 7 pages, 1 table, 4 figures; submitted to ApJ Letters; V3: minor correction
    • 

    corecore