601 research outputs found

    Light nuclei quasiparticle energy shift in hot and dense nuclear matter

    Full text link
    Nuclei in dense matter are influenced by the medium. In the cluster mean field approximation, an effective Schr\"odinger equation for the AA-particle cluster is obtained accounting for the effects of the correlated medium such as self-energy, Pauli blocking and Bose enhancement. Similar to the single-baryon states (free neutrons and protons), the light elements (2≤A≤42 \le A \le 4, internal quantum state ν\nu) are treated as quasiparticles with energies EA,ν(P⃗;T,nn,np)E_{A,\nu}(\vec P; T, n_n,n_p). These energies depend on the center of mass momentum P⃗\vec P, as well as temperature TT and the total densities nn,npn_n,n_p of neutrons and protons, respectively. No β\beta equilibrium is considered so that nn,npn_n, n_p (or the corresponding chemical potentials μn,μp\mu_n, \mu_p) are fixed independently. For the single nucleon quasiparticle energy shift, different approximate expressions such as Skyrme or relativistic mean field approaches are well known. Treating the AA-particle problem in appropriate approximations, results for the cluster quasiparticle shifts are given. Properties of dense nuclear matter at moderate temperatures in the subsaturation density region considered here are influenced by the composition. This in turn is determined by the cluster quasiparticle energies, in particular the formation of clusters at low densities when the temperature decreases, and their dissolution due to Pauli blocking as the density increases. Our finite-temperature Green function approach covers different limiting cases: The low-density region where the model of nuclear statistical equilibrium and virial expansions can be applied, and the saturation density region where a mean field approach is possible

    Interpolation formula for the electrical conductivity of nonideal plasmas

    Get PDF
    On the basis of a quantum-statistical approach to the electrical conductivity of nonideal plasmas we derive analytical results in the classical low-density regime, in the degenerate Born limit, and for the contribution of the Debye-Onsager relaxation effect. These explicit results are used to construct an improved interpolation formula of the electrical conductivity valid in a wide range of temperature and density which allows to compare with available experimental data of nonideal plasmas.Comment: 7 pages, 1 tabl

    Neutral helium spectral lines in dense plasmas

    Get PDF

    Towards an understanding of Type Ia supernovae from a synthesis of theory and observations

    Full text link
    Motivated by the fact that calibrated light curves of Type Ia supernovae (SNe Ia) have become a major tool to determine the expansion history of the Universe, considerable attention has been given to, both, observations and models of these events over the past 15 years. Here, we summarize new observational constraints, address recent progress in modeling Type Ia supernovae by means of three-dimensional hydrodynamic simulations, and discuss several of the still open questions. It will be be shown that the new models have considerable predictive power which allows us to study observable properties such as light curves and spectra without adjustable non-physical parameters. This is a necessary requisite to improve our understanding of the explosion mechanism and to settle the question of the applicability of SNe Ia as distance indicators for cosmology. We explore the capabilities of the models by comparing them with observations and we show how such models can be applied to study the origin of the diversity of SNe Ia.Comment: 26 pages, 13 figures, Frontiers of Physics, in prin

    Momentum conservation and local field corrections for the response of interacting Fermi gases

    Get PDF
    We reanalyze the recently derived response function for interacting systems in relaxation time approximation respecting density, momentum and energy conservation. We find that momentum conservation leads exactly to the local field corrections for both cases respecting only density conservation and respecting density and energy conservation. This rewriting simplifies the former formulae dramatically. We discuss the small wave vector expansion and find that the response function shows a high frequency dependence of ω−5\omega^{-5} which allows to fulfill higher order sum rules. The momentum conservation also resolves a puzzle about the conductivity which should only be finite in multicomponent systems

    Pair Fluctuations in Ultra-small Fermi Systems within Self-Consistent RPA at Finite Temperature

    Get PDF
    A self-consistent version of the Thermal Random Phase Approximation (TSCRPA) is developed within the Matsubara Green's Function (GF) formalism. The TSCRPA is applied to the many level pairing model. The normal phase of the system is considered. The TSCRPA results are compared with the exact ones calculated for the Grand Canonical Ensemble. Advantages of the TSCRPA over the Thermal Mean Field Approximation (TMFA) and the standard Thermal Random Phase Approximation (TRPA) are demonstrated. Results for correlation functions, excitation energies, single particle level densities, etc., as a function of temperature are presented.Comment: 22 pages, 13 figers and 3 table
    • …
    corecore