4,116 research outputs found
The local dust foregrounds in the microwave sky: I. Thermal emission spectra
Analyses of the cosmic microwave background (CMB) radiation maps made by the
Wilkinson Microwave Anisotropy Probe (WMAP) have revealed anomalies not
predicted by the standard inflationary cosmology. In particular, the power of
the quadrupole moment of the CMB fluctuations is remarkably low, and the
quadrupole and octopole moments are aligned mutually and with the geometry of
the Solar system. It has been suggested in the literature that microwave sky
pollution by an unidentified dust cloud in the vicinity of the Solar system may
be the cause for these anomalies. In this paper, we simulate the thermal
emission by clouds of spherical homogeneous particles of several materials.
Spectral constraints from the WMAP multi-wavelength data and earlier infrared
observations on the hypothetical dust cloud are used to determine the dust
cloud's physical characteristics. In order for its emissivity to demonstrate a
flat, CMB-like wavelength dependence over the WMAP wavelengths (3 through 14
mm), and to be invisible in the infrared light, its particles must be
macroscopic. Silicate spheres from several millimetres in size and carbonaceous
particles an order of magnitude smaller will suffice. According to our
estimates of the abundance of such particles in the Zodiacal cloud and
trans-neptunian belt, yielding the optical depths of the order of 1E-7 for each
cloud, the Solar-system dust can well contribute 10 microKelvin (within an
order of magnitude) in the microwaves. This is not only intriguingly close to
the magnitude of the anomalies (about 30 microKelvin), but also alarmingly
above the presently believed magnitude of systematic biases of the WMAP results
(below 5 microKelvin) and, to an even greater degree, of the future missions
with higher sensitivities, e.g. PLANCK.Comment: 33 pages, 9 figures, 1 table. The Astrophysical Journal, 2009,
accepte
Comparative gene mapping in Arabidopsis lyrata chromosomes 1 and 2 and the corresponding A. thaliana chromosome 1: recombination rates, rearrangements and centromere location
To add detail to the genetic map of Arabidopsis lyrata, and compare it with that of A. thaliana, we have developed many additional markers in the A. lyrata linkage groups, LG1 and LG2, corresponding to A. thaliana chromosome 1. We Used a newly developed method for marker development for single nucleotide polymorphisms present in gene sequences, Plus length differences, to map genes in an A. lyrata family, including variants in several genes close to the A. thaliana centromere I, providing the first data on the location of an A. lyrata centromere; we discuss the implications for the evolution of chromosome 1 of A. thaliana. With our larger marker density, large rearrangements between the two Arabidopsis species are excluded, except for a large inversion on LG2. This was previously known in Capsella; its presence in A. lyrata suggests that, like most other rearrangements. it probably arose in the A. thaliana lineage. Knowing that marker orders are similar, we can now compare homologous, non-rearranged map distances to test the prediction of more frequent crossing-over in the more inbreeding species. Our results support the previous conclusion of similar distances in the two species for A. lyrata LG1 markers. For LG2 markers, the distances were consistently, but non-significantly, larger in A. lyrata. Given the two species' large particularly for LG1, suggests that DNA content difference, the similarity of map lengths. crossing-over is more frequent across comparable physical distances in the inbreeder, A. thaliana, as predicted.</p
Steady, oscillatory, and unsteady subsonic Aerodynamics, production version 1.1 (SOUSSA-P1.1). Volume 2: User/programmer manual
A user/programmer manual for the computer program SOUSSA P 1.1 is presented. The program was designed to provide accurate and efficient evaluation of steady and unsteady loads on aircraft having arbitrary shapes and motions, including structural deformations. These design goals were in part achieved through the incorporation of the data handling capabilities of the SPAR finite element Structural Analysis computer program. As a further result, SOUSSA P possesses an extensive checkpoint/ restart facility. The programmer's portion of this manual includes overlay/subroutine hierarchy, logical flow of control, definition of SOUSSA P 1.1 FORTRAN variables, and definition of SOUSSA P 1.1 subroutines. Purpose of the SOUSSA P 1.1 modules, input data to the program, output of the program, hardware/software requirements, error detection and reporting capabilities, job control statements, a summary of the procedure for running the program and two test cases including input and output and listings are described in the user oriented portion of the manual
Transient transfection induces different intracellular calcium signaling in CHO K1 versus HEK 293 cells
For the controlled production of recombinant proteinsin mammalian cells by transient transfection, it maybe desirable not only to manipulate, but also todiagnose the expression success early. Here, weapplied laser scanning confocal microscopy to monitortransfection induced intracellular Ca2+responses. We compared Chinese hamster ovary (CHO K1)versus human embryo kidney (HEK) 293 cell lines, whichdiffer largely in their transfectability. An improvedcalcium phosphate transfection method was used for itssimplicity and its demonstrated upscale potential.Cytosolic Ca2+ signaling appeared to inverselyreflect the cellular transfection fate. Virtually allCHO cells exhibited asynchronous, cytosolicCa2+ oscillations, which peaked 4 h afteraddition of the transfecting solution. Yet, most ofthe HEK cells displayed a slow and continuousCa2+ increase over the time of transfection. CHOcells, when exposed to a transfection-enhancingglycerol shock, strongly downregulated their Ca2+response, including its oscillations. When treatedwith thapsigargin, a Ca2+ store depleting drug,the number of successfully transfected CHO cells was significantly reduced. Our result points tointracellular store release as a critical componentfor the transfection fate of CHO cells, and its early detection before product visualizatio
Optimization of the leak conductance in the squid giant axon
We report on a theoretical study showing that the leak conductance density,
\GL, in the squid giant axon appears to be optimal for the action potential
firing frequency. More precisely, the standard assumption that the leak current
is composed of chloride ions leads to the result that the experimental value
for \GL is very close to the optimal value in the Hodgkin-Huxley model which
minimizes the absolute refractory period of the action potential, thereby
maximizing the maximum firing frequency under stimulation by sharp, brief input
current spikes to one end of the axon. The measured value of \GL also appears
to be close to optimal for the frequency of repetitive firing caused by a
constant current input to one end of the axon, especially when temperature
variations are taken into account. If, by contrast, the leak current is assumed
to be composed of separate voltage-independent sodium and potassium currents,
then these optimizations are not observed.Comment: 9 pages; 9 figures; accepted for publication in Physical Review
Lessons from LIMK1 enzymology and their impact on inhibitor design
LIM domain kinase 1 (LIMK1) is a key regulator of actin dynamics. It is thereby a potential therapeutic target for the prevention of fragile X syndrome and amyotrophic lateral sclerosis. Herein, we use X-ray crystallography and activity assays to describe how LIMK1 accomplishes substrate specificity, to suggest a unique ‘rock-and-poke’ mechanism of catalysis and to explore the regulation of the kinase by activation loop phosphorylation. Based on these findings, a differential scanning fluorimetry assay and a RapidFire mass spectrometry activity assay were established, leading to the discovery and confirmation of a set of small-molecule LIMK1 inhibitors. Interestingly, several of the inhibitors were inactive towards the closely related isoform LIMK2. Finally, crystal structures of the LIMK1 kinase domain in complex with inhibitors (PF-477736 and staurosporine, respectively) are presented, providing insights into LIMK1 plasticity upon inhibitor binding
Discovering Evolutionary Stepping Stones through Behavior Domination
Behavior domination is proposed as a tool for understanding and harnessing
the power of evolutionary systems to discover and exploit useful stepping
stones. Novelty search has shown promise in overcoming deception by collecting
diverse stepping stones, and several algorithms have been proposed that combine
novelty with a more traditional fitness measure to refocus search and help
novelty search scale to more complex domains. However, combinations of novelty
and fitness do not necessarily preserve the stepping stone discovery that
novelty search affords. In several existing methods, competition between
solutions can lead to an unintended loss of diversity. Behavior domination
defines a class of algorithms that avoid this problem, while inheriting
theoretical guarantees from multiobjective optimization. Several existing
algorithms are shown to be in this class, and a new algorithm is introduced
based on fast non-dominated sorting. Experimental results show that this
algorithm outperforms existing approaches in domains that contain useful
stepping stones, and its advantage is sustained with scale. The conclusion is
that behavior domination can help illuminate the complex dynamics of
behavior-driven search, and can thus lead to the design of more scalable and
robust algorithms.Comment: To Appear in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2017
Strong-Coupling Expansion for the Hubbard Model
A strong-coupling expansion for models of correlated electrons in any
dimension is presented. The method is applied to the Hubbard model in
dimensions and compared with numerical results in . Third order expansion
of the Green function suffices to exhibit both the Mott metal-insulator
transition and a low-temperature regime where antiferromagnetic correlations
are strong. It is predicted that some of the weak photoemission signals
observed in one-dimensional systems such as should become stronger as
temperature increases away from the spin-charge separated state.Comment: 4 pages, RevTex, 3 epsf figures include
Recommended from our members
Human-specific transcriptional regulation of CNS development genes by FOXP2.
The signalling pathways controlling both the evolution and development of language in the human brain remain unknown. So far, the transcription factor FOXP2 (forkhead box P2) is the only gene implicated in Mendelian forms of human speech and language dysfunction. It has been proposed that the amino acid composition in the human variant of FOXP2 has undergone accelerated evolution, and this two-amino-acid change occurred around the time of language emergence in humans. However, this remains controversial, and whether the acquisition of these amino acids in human FOXP2 has any functional consequence in human neurons remains untested. Here we demonstrate that these two human-specific amino acids alter FOXP2 function by conferring differential transcriptional regulation in vitro. We extend these observations in vivo to human and chimpanzee brain, and use network analysis to identify novel relationships among the differentially expressed genes. These data provide experimental support for the functional relevance of changes in FOXP2 that occur on the human lineage, highlighting specific pathways with direct consequences for human brain development and disease in the central nervous system (CNS). Because FOXP2 has an important role in speech and language in humans, the identified targets may have a critical function in the development and evolution of language circuitry in humans
- …
