378 research outputs found

    Physics of Eclipsing Binaries: Modelling in the new era of ultra-high precision photometry

    Get PDF
    Recent ultra-high precision observations of eclipsing binaries, especially data acquired by the Kepler satellite, have made accurate light curve modelling increasingly challenging but also more rewarding. In this contribution, we discuss low-amplitude signals in light curves that can now be used to derive physical information about eclipsing binaries but that were unaccessible before the Kepler era. A notable example is the detection of Doppler beaming, which leads to an increase in flux when a star moves towards the satellite and a decrease in flux when it moves away. Similarly, Rømer delays, or light travel time effects, also have to taken into account when modelling the supreme quality data that is now available. The detection of offsets between primary and secondary eclipse phases in binaries with extreme mass ratios, and the observation of Rømer delays in the signals of pulsators in binary stars, have allowed us to determine the orbits of several binaries without the need for spectroscopy. A third example of a small-scale effect that has to be taken into account when modelling specific binary systems, are lensing effects. A new binary light curve modelling code, PHOEBE 2.0, that takes all these effect into account is currently being developed

    PHOEBE 2.0 – Where no model has gone before

    Get PDF
    phoebe 2.0 is an open source framework bridging the gap between stellar observations and models. It allows to create and fit models simultaneously and consistently to a wide range of observational data such as photometry, spectroscopy, spectrapolarimetry, interferometry and astrometry. To reach the level of precision required by the newest generation of instruments such as Kepler, GAIA and the arrays of large telescopes, the code is set up to handle a wide range of phenomena such as multiplicity, rotation, pulsations and magnetic fields, and to model the involved physics to a new level

    Influence of interstellar and atmospheric extinction on light curves of eclipsing binaries

    Full text link
    Interstellar and atmospheric extinctions redden the observational photometric data and they should be handled rigorously. This paper simulates the effect of reddening for the modest case of two main sequence T1 = 6500K and T2 = 5500K components of a detached eclipsing binary system. It is shown that simply subtracting a constant from measured magnitudes (the approach often used in the field of eclipsing binaries) to account for reddening should be avoided. Simplified treatment of the reddening introduces systematics that reaches \~0.01mag for the simulated case, but can be as high as ~0.2mag for e.g. B8V--K4III systems. With rigorous treatment, it is possible to uniquely determine the color excess value E(B-V) from multi-color photometric light curves of eclipsing binaries.Comment: 6 pages, 9 figures, 1 table, Kopal's Binary Star Legacy conference contribution (Litomysl 2004), to be published by Kluwer A&S

    Physics of Eclipsing Binaries: Heartbeat Stars and Tidally Induced Pulsations

    Get PDF
    Heartbeat stars are a relatively new class of eccentric ellipsoidal variable first discovered by Kepler. An overview of the current field is given with details of some of the interesting objects identified in our current Kepler sample of 135 heartbeats stars. Three objects that have recently been or are undergoing detailed study are described along with suggestions for further avenues of research. We conclude by discussing why heartbeat stars are an interesting new tool to study tidally induced pulsations and orbital dynamics

    Disentangling effective temperatures of individual eclipsing binary components by means of color-index constraining

    Full text link
    Eclipsing binary stars are gratifying objects because of their unique geometrical properties upon which all important physical parameters such as masses, radii, temperatures, luminosities and distance may be obtained in absolute scale. This poses strict demand on the model to be free of systematic effects that would influence the results later used for calibrations, catalogs and evolution theory. We present an objective scheme of obtaining individual temperatures of both binary system components by means of color-index constraining, with the only requirement that the observational data-set is acquired in a standard photometric system. We show that for a modest case of two similar main-sequence components the erroneous approach of assuming the temperature of the primary star from the color index yields temperatures which are systematically wrong by ~100K.Comment: 6 pages, 3 figures, 1 table; to appear in proceedings of the Close Binaries in the 21st Century conference in Syros, Greec

    KOI 1224, a Fourth Bloated Hot White Dwarf Companion Found With Kepler

    Full text link
    We present an analysis and interpretation of the Kepler binary system KOI 1224. This is the fourth binary found with Kepler that consists of a thermally bloated, hot white dwarf in a close orbit with a more or less normal star of spectral class A or F. As we show, KOI 1224 contains a white dwarf with Teff = 14400 +/- 1100 K, mass = 0.20 +/- 0.02 Msun, and radius = 0.103 +/- 0.004 Rsun, and an F-star companion of mass = 1.59 +/- 0.07 Msun that is somewhat beyond its terminal-age main sequence. The orbital period is quite short at 2.69802 days. The ingredients that are used in the analysis are the Kepler binary light curve, including the detection of the Doppler boosting effect; the NUV and FUV fluxes from the Galex images of this object; an estimate of the spectral type of the F-star companion; and evolutionary models of the companion designed to match its effective temperature and mean density. The light curve is modelled with a new code named Icarus which we describe in detail. Its features include the full treatment of orbital phase-resolved spectroscopy, Doppler boosting, irradiation effects and transits/eclipses, which are particularly suited to irradiated eclipsing binaries. We interpret the KOI 1224 system in terms of its likely evolutionary history. We infer that this type of system, containing a bloated hot white dwarf, is the direct descendant of an Algol-type binary. In spite of this basic understanding of the origin of KOI 1224, we discuss a number of problems associated with producing this type of system with this short of an short orbital period.Comment: 14 pages, 8 figures, 2 tables, submitted to Ap

    Physics of Eclipsing Binaries: Motivation for the New-Age Modeling Suite

    Get PDF
    Recent ultra-high precision observations of eclipsing binaries, especially data acquired by the Kepler satellite, have made accurate light curve modelling increasingly challenging but also more rewarding. In this contribution, we discuss low-amplitude signals in light curves that can now be used to derive physical information about eclipsing binaries but that were unaccessible before the Kepler era. A notable example is the detection of Doppler beaming, which leads to an increase in flux when a star moves towards the satellite and a decrease in flux when it moves away. Similarly, Rpmer delays, or light travel time effects, also have to taken into account when modelling the supreme quality data that is now available. The detection of offsets between primary and secondary eclipse phases in binaries with extreme mass ratios, and the observation of Horner delays in the signals of pulsators in binary stars, have allowed us to determine the orbits of several binaries without the need for spectroscopy. A third example of a small-scale effect that has to be taken into account when modelling specific binary systems, are lensing effects. A new binary light curve modelling code, PHOEBE 2.0, that takes all these effect into account is currently being developed

    Call to adopt a nominal set of astrophysical parameters and constants to improve the accuracy of fundamental physical properties of stars

    Full text link
    The increasing precision of astronomical observations of stars and stellar systems is gradually getting to a level where the use of slightly different values of the solar mass, radius and luminosity, as well as different values of fundamental physical constants, can lead to measurable systematic differences in the determination of basic physical properties. An equivalent issue with an inconsistent value of the speed of light was resolved by adopting a nominal value that is constant and has no error associated with it. Analogously, we suggest that the systematic error in stellar parameters may be eliminated by: (1) replacing the solar radius Rsun and luminosity Lsun by the nominal values that are by definition exact and expressed in SI units: 1 RnomSun = 6.95508 x 10^8 m and 1 LnomSun = 3.846 x 10^{26} W; (2) computing stellar masses in terms of Msun by noting that the measurement error of the product G.Msun is 5 orders of magnitude smaller than the error in G; (3) computing stellar masses and temperatures in SI units by using the derived values Msun(2010) = 1.988547 x 10^{30} kg and Tsun(2010) = 5779.57 K; and (4) clearly stating the reference for the values of the fundamental physical constants used. We discuss the need and demonstrate the advantages of such a paradigm shift.Comment: 6 pages, 3 table

    Impact of Rubin Observatory LSST Template Acquisition Strategies on Early Science from the Transients and Variable Stars Science Collaboration: Non-time-critical Science Cases

    Get PDF
    Vera C. Rubin Observatory Legacy Survey of Space and Time, LSST, will revolutionize modern astronomy by producing an extremely deep (coadded depth ~27 mag) depth-limited survey of the entire southern sky (LSST Science Collaboration et al. 2009). The 8.4 m large-aperture, wide-field telescope, which is based in Cerro Pachón, will image the entire Southern sky every three nights in multiple bands (SDSS-u, g, r, i, z, y) and produce a fire-hose of data, 20 Tb each night, concluding in a 60 petabyte data set as the legacy of the 10 yr survey. Extracting meaningful light curves from variable objects requires difference imaging to both identify variability and calibrate light curve data products. Templates, co-added groups of visits that act as an image of the "static" sky, are a key component of Difference Imaging Analysis (DIA) and as such are of paramount importance for all science that involves variable objects. As the "non-time-critical" science cases discussed here are mostly periodic, they generally do not depend upon the survey alert stream; however, templates are still crucial for performing science and calibrations during the first year. We provide recommendations for observing strategies for template acquisition starting from commissioning and through Year 1 of the survey
    • …
    corecore