447 research outputs found

    DMBT1 (deleted in malignant brain tumors 1)

    Get PDF
    Review on DMBT1 (deleted in malignant brain tumors 1), with data on DNA, on the protein encoded, and where the gene is implicated

    SpBase: the sea urchin genome database and web site

    Get PDF
    SpBase is a system of databases focused on the genomic information from sea urchins and related echinoderms. It is exposed to the public through a web site served with open source software (http://spbase.org/). The enterprise was undertaken to provide an easily used collection of information to directly support experimental work on these useful research models in cell and developmental biology. The information served from the databases emerges from the draft genomic sequence of the purple sea urchin, Strongylocentrotus purpuratus and includes sequence data and genomic resource descriptions for other members of the echinoderm clade which in total span 540 million years of evolutionary time. This version of the system contains two assemblies of the purple sea urchin genome, associated expressed sequences, gene annotations and accessory resources. Search mechanisms for the sequences and the gene annotations are provided. Because the system is maintained along with the Sea Urchin Genome resource, a database of sequenced clones is also provided

    Subtractive gene expression profiling of articular cartilage and mesenchymal stem cells: serpins as cartilage-relevant differentiation markers

    Get PDF
    SummaryObjectiveMesenchymal stem cells (MSCs) are a population of cells broadly discussed to support cartilage repair. The differentiation of MSCs into articular chondrocytes is, however, still poorly understood on the molecular level. The aim of this study was to perform an almost genome-wide screen for genes differentially expressed between cartilage and MSCs and to extract new markers useful to define chondrocyte differentiation stages.MethodsGene expression profiles of MSCs (n=8) and articular cartilage from OA patients (n=7) were compared on a 30,000 cDNA-fragment array and differentially expressed genes were extracted by subtraction. Expression of selected genes was assessed during in vitro chondrogenic differentiation of MSCs and during dedifferentiation of expanded chondrocytes using quantitative and semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). Protein secretion was measured by enzyme-linked immunosorbent assay.ResultsEighty-seven genes were differentially expressed between MSCs and cartilage with a more than three-fold difference. Sixty-seven of them were higher expressed in cartilage and among them 15 genes were previously not detected in cartilage. Differential expression was confirmed for 69% of 26 reanalysed genes by RT-PCR. The profiles of three unknown transcripts and six protease-related molecules were characterised during differentiation. SERPINA1 and SERPINA3 mRNA expression correlated with chondrogenic differentiation of MSCs and dedifferentiation of chondrocytes, and SERPINA1 protein levels in culture supernatants could be correlated alike.ConclusionscDNA-array analysis identified SERPINA1 and A3 as new differentiation-relevant genes for cartilage. Since SERPINA1 secretion correlated with both chondrogenesis of MSCs and dedifferentiation during chondrocyte expansion, it represents an attractive marker for refinement of chondrocyte differentiation

    Estimating large-scale signaling networks through nested effect models with intervention effects from microarray data

    Get PDF
    Motivation: Targeted interventions using RNA interference in combination with the measurement of secondary effects with DNA microarrays can be used to computationally reverse engineer features of upstream non-transcriptional signaling cascades based on the nested structure of effects

    DMBT1 expression is down-regulated in breast cancer.

    Get PDF
    BACKGROUND: We studied the expression of DMBT1 (deleted in malignant brain tumor 1), a putative tumor suppressor gene, in normal, proliferative, and malignant breast epithelium and its possible relation to cell cycle. METHODS: Sections from 17 benign lesions and 55 carcinomas were immunostained with anti DMBT1 antibody (DMBTh12) and sections from 36 samples, were double-stained also with anti MCM5, one of the 6 pre-replicative complex proteins with cell proliferation-licensing functions. DMBT1 gene expression at mRNA level was assessed by RT-PCR in frozen tissues samples from 39 patients. RESULTS: Normal glands and hyperplastic epithelium in benign lesions displayed a luminal polarized DMBTh12 immunoreactivity. Normal and hyperplastic epithelium adjacent to carcinomas showed a loss of polarization, with immunostaining present in basal and perinuclear cytoplasmic compartments. DMBT1 protein expression was down-regulated in the cancerous lesions compared to the normal and/or hyperplastic epithelium adjacent to carcinomas (3/55 positive carcinomas versus 33/42 positive normal/hyperplastic epithelia; p = 0.0001). In 72% of cases RT-PCR confirmed immunohistochemical results. Most of normal and hyperplastic mammary cells positive with DMBTh12 were also MCM5-positive. CONCLUSIONS: The redistribution and up-regulation of DMBT1 in normal and hyperplastic tissues flanking malignant tumours and its down-regulation in carcinomas suggests a potential role in breast cancer. Moreover, the concomitant expression of DMTB1 and MCM5 suggests its possible association with the cell-cycle regulation

    RNA-Seq identifies SPGs as a ventral skeletal patterning cue in sea urchins

    Full text link
    The sea urchin larval skeleton offers a simple model for formation of developmental patterns. The calcium carbonate skeleton is secreted by primary mesenchyme cells (PMCs) in response to largely unknown patterning cues expressed by the ectoderm. To discover novel ectodermal cues, we performed an unbiased RNA-Seq-based screen and functionally tested candidates; we thereby identified several novel skeletal patterning cues. Among these, we show that SLC26a2/7 is a ventrally expressed sulfate transporter that promotes a ventral accumulation of sulfated proteoglycans, which is required for ventral PMC positioning and skeletal patterning. We show that the effects of SLC perturbation are mimicked by manipulation of either external sulfate levels or proteoglycan sulfation. These results identify novel skeletal patterning genes and demonstrate that ventral proteoglycan sulfation serves as a positional cue for sea urchin skeletal patterning

    Gene identification and analysis of transcripts differentially regulated in fracture healing by EST sequencing in the domestic sheep

    Get PDF
    BACKGROUND: The sheep is an important model animal for testing novel fracture treatments and other medical applications. Despite these medical uses and the well known economic and cultural importance of the sheep, relatively little research has been performed into sheep genetics, and DNA sequences are available for only a small number of sheep genes. RESULTS: In this work we have sequenced over 47 thousand expressed sequence tags (ESTs) from libraries developed from healing bone in a sheep model of fracture healing. These ESTs were clustered with the previously available 10 thousand sheep ESTs to a total of 19087 contigs with an average length of 603 nucleotides. We used the newly identified sequences to develop RT-PCR assays for 78 sheep genes and measured differential expression during the course of fracture healing between days 7 and 42 postfracture. All genes showed significant shifts at one or more time points. 23 of the genes were differentially expressed between postfracture days 7 and 10, which could reflect an important role for these genes for the initiation of osteogenesis. CONCLUSION: The sequences we have identified in this work are a valuable resource for future studies on musculoskeletal healing and regeneration using sheep and represent an important head-start for genomic sequencing projects for Ovis aries, with partial or complete sequences being made available for over 5,800 previously unsequenced sheep genes
    • …
    corecore