1,096 research outputs found

    Evolution of the disc atmosphere in the X-ray binary MXB 1659-298, during its 2015-2017 outburst

    Get PDF
    We report on the evolution of the X-ray emission of the accreting neutron star (NS) low mass X-ray binary (LMXB), MXB 1659-298, during its most recent outburst in 2015-2017. We detected 60 absorption lines during the soft state (of which 21 at more than 3 σ\sigma), that disappeared in the hard state (e.g., the Fe xxv and Fe xxvi lines). The absorbing plasma is at rest, likely part of the accretion disc atmosphere. The bulk of the absorption features can be reproduced by a high column density (log(NH/cm−2)∼23.5log(N_H/cm^{-2})\sim23.5) of highly ionised (log(ξ/erg cm s−1)∼3.8log(\xi/erg~cm~s^{-1})\sim3.8) plasma. Its disappearance during the hard state is likely the consequence of a thermal photo-ionisation instability. MXB 1659-298's continuum emission can be described by the sum of an absorbed disk black body and its Comptonised emission, plus a black body component. The observed spectral evolution with state is in line with that typically observed in atoll and stellar mass black hole LMXB. The presence of a relativistic Fe Kα\alpha disk-line is required during the soft state. We also tentatively detect the Fe xxii doublet, whose ratio suggests an electron density of the absorber of ne>1013cm−3n_e>10^{13} cm^{-3}, hence, the absorber is likely located at <7×104rg<7\times10^4 r_g from the illuminating source, well inside the Compton and outer disc radii. MXB 1659-298 is the third well monitored atoll LMXB showcasing intense Fe xxv and Fe xxvi absorption during the soft state that disappears during the hard state.Comment: MNRAS in pres

    Probing variability patterns of the Fe K line complex in bright nearby AGNs

    Get PDF
    The unprecedented sensitivity of current X-ray telescopes allows for the first time to address the issue of the Fe K line complex variability patterns in bright, nearby AGNs. We examine XMM-Newton observations of the brightest sources of the FERO sample of radio-quiet type 1 AGNs with the aim of characterizing the temporal behaviour of Fe K complex features. A systematic mapping of residual flux above and below the continuum in the 4-9 keV range is performed in the time vs energy domain, with the purpose of identifying interesting spectral features in the three energy bands: 5.4-6.1 keV, 6.1-6.8 keV and 6.8-7.2 keV, corresponding respectively to the redshifted, rest frame and blueshifted or highly ionized Fe Kalpha line bands. The variability significance is assessed by extracting light curves and comparing them with MonteCarlo simulations. The time-averaged profile of the Fe K complex revealed spectral complexity in several observations. Red- and blue-shifted components (either in emission or absorption) were observed in 30 out of 72 observations, with an average ~90 eV for emission and ~ -30 eV for absorption features. We detected significant line variability (with confidence levels ranging between 90% and 99.7%) within at least one of the above energy bands in 26 out of 72 observations on time scales of ~6-30 ks. Reliability of these features has been carefully calculated using this sample and has been assessed at ~3sigma confidence level. This work increases the currently scanty number of detections of variable, energy shifted, Fe lines and confirms the reliability of the claimed detections. We found that the distribution of detected features is peaked at high variability significances in the red- and blue-shifted energy bands, suggesting an origin in a relativistically modified accretion flow.Comment: Accepted for publication in Astronomy & Astrophysic

    Bandgap widening and resonator mass reduction through wave locking

    Get PDF
    Elastic metamaterials made of locally resonant arrays have been developed as effective ways to create band gaps for elastic or acoustic travelling waves. They work by implementing stationary states in the structure that localise and partially reflect waves. A different, simpler, way of obtaining band gaps is using phononic crystals, where the generated band gaps come from the periodic reflection and phase cancellation of travelling waves. In this work a different metamaterial structure that generates band gaps by means of coupling two contra-propagating modes is reported. This metamaterial, as it will be shown numerically and experimentally, generates larger band gaps with lower added mass, providing benefits for lighter structures

    Ultrasound imaging, a stethoscope for body composition assessment

    Get PDF
    Bone and muscle are two deeply interconnected organs and a strong relationship between them exists in their development and maintenance. The peak of both bone and muscle mass is achieved in early adulthood, followed by a progressive decline after the age of 40. The increase in life expectancy in developed countries resulted in an increase of degenerative diseases affecting the musculoskeletal system. Osteoporosis and sarcopenia represent a major cause of morbidity and mortality in the elderly population and are associated with a significant increase in healthcare costs. Several imaging techniques are currently available for the non-invasive investigation of bone and muscle mass and quality. Conventional radiology, dual energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound often play a complementary role in the study of osteoporosis and sarcopenia, depicting different aspects of the same pathology. This paper presents the different imaging modalities currently used for the investigation of bone and muscle mass and quality in osteoporosis and sarcopenia with special emphasis on the clinical applications and limitations of each technique and with the intent to provide interesting insights into recent advances in the field of conventional imaging, novel high-resolution techniques and fracture risk

    Graded elastic metasurface for enhanced energy harvesting

    Get PDF
    In elastic wave systems, combining the powerful concepts of resonance and spatial grading within structured surface arrays enable resonant metasurfaces to exhibit broadband wave trapping, mode conversion from surface (Rayleigh) waves to bulk (shear) waves, and spatial frequency selection. Devices built around these concepts allow for precise control of surface waves, often with structures that are subwavelength, and utilise Rainbow trapping that separates the signal spatially by frequency. Rainbow trapping yields large amplifications of displacement at the resonator positions where each frequency component accumulates. We investigate whether this amplification, and the associated control, can be used to create energy harvesting devices; the potential advantages and disadvantages of using graded resonant devices as energy harvesters is considered. We concentrate upon elastic plate models for which the A0 mode dominates, and take advantage of the large displacement amplitudes in graded resonant arrays of rods, to design innovative metasurfaces that trap waves for enhanced piezoelectric energy harvesting. Numerical simulation allows us to identify the advantages of such graded metasurface devices and quantify its efficiency, we also develop accurate models of the phenomena and extend our analysis to that of an elastic half-space and Rayleigh surface waves

    Lessons to be Learnt from Real-World Studies on Immune-Related Adverse Events with Checkpoint Inhibitors: A Clinical Perspective from Pharmacovigilance

    Get PDF
    The advent of immune checkpoint inhibitors (ICIs) caused a paradigm shift both in drug development and clinical practice; however, by virtue of their mechanism of action, the excessively activated immune system results in a multitude of off-target toxicities, the so-called immune-related adverse events (irAEs), requiring new skills for timely diagnosis and a multidisciplinary approach to successfully manage the patients. In the recent past, a plethora of large-scale pharmacovigilance analyses have characterized various irAEs in terms of spectrum and clinical features in the real world. This review aims to summarize and critically appraise the current landscape of pharmacovigilance studies, thus deriving take-home messages for oncologists. A brief primer to study design, conduction, and data interpretation is also offered. As of February 2020, 30 real-world postmarketing studies have characterized multiple irAEs through international spontaneous reporting systems, namely WHO Vigibase and the US FDA Adverse Event Reporting System. The majority of studies investigated a single irAE and provided new epidemiological evidence about class-specific patterns of irAEs (i.e. anti-cytotoxic T-lymphocyte antigen 4 [CTLA-4] versus anti-programmed cell death 1 [PD-1] receptor, and its ligand [PD-L1]), kinetics of appearance, co-occurrences (overlap) among irAEs, and fatality rate. Oncologists should be aware of both strengths and limitations of these pharmacovigilance analyses, especially in terms of data interpretation. Optimal management (including rechallenge), predictivity of irAEs (as potential biomarkers of effectiveness), and comparative safety of ICIs (also in terms of combination regimens) represent key research priorities for next-generation real-world studies

    Aspetti clinici e medico-legali nella terapia infiltrativa

    Get PDF
    The usefulness of local infiltrative treatment is recognized in most guidelines: it consists in the instillation of drugs (steroids, local anesthetics or hyaluronic acid) directly at the site of illness (intra- or periarticular or in soft tissues). Treatment indications must be documented in a clinical report or certification including objective clinical data. Infiltration is an invasive procedure that involves possible side effects and complications. Therefore, the patient must receive from the doctor all the information necessary to grant a valid consent to treatment. During the informative interview, which can be accompanied (but not replaced) by the delivery of a short information form to the patient, the doctor must explain, in a comprehensible way for the single patient, diagnosis, type of treatment proposed, its modalities of execution, potential benefits and risks, possible complications and alternative therapies, behavior that the patient has to observe during the treatment process. The law 219/2017 expressly stated the necessity of the acquisition of consent in written form. In this paper, samples of informative and consent forms for infiltrative therapy are proposed: they can represent a useful tool for both professionals and patients
    • …
    corecore