348 research outputs found

    Tribological Studies on Scuffing Due to the Influence of Carbon Dioxide Used as a Refrigerant in Compressors

    Get PDF
    The refrigeration and air conditioning industry has expressed a great interest in the use of carbon dioxide (CO2) as a refrigerant. CO2 is anticipated to replace HFC refrigerants, which are known to have a negative effect on the environment. The reason behind the interest in CO2 is the fact that it is a natural refrigerant, thus environmentally acceptable. Of course, such a replacement raises concerns regarding design criteria and performance due to the different thermodynamic properties of CO2 and the very different range of pressures required for the CO2 refrigeration cycle. So far, work related to CO2 has been done from a thermodynamics point of view and researchers have made significant progress developing automotive and portable air-conditioning systems that use the environmentally friendly carbon dioxide as a refrigerant. The purpose of this work is to develop an understanding of how CO2 plays a role from a tribology standpoint. More specifically, the goal of this work is to gain an understanding on how CO2 influences friction, lubrication, wear and scuffing of tribological pairs used in compressors. Work in the area of tribology related to CO2 is very limited. Preliminary work by Cusano and coworkers showed that consistent data for tests using CO2 could not be acquired nor could a satisfactory explanation be offered for the inconsistency. Their results triggered the initiation of the work presented here. In this first attempt to understand the tribological behavior of CO2 several problems were encountered. During this work we noted that its behavior, unlike conventional refrigerants, could not always be predicted. We believe that this can be attributed to the thermodynamic properties of CO2, which cannot be ignored when studying its tribological behavior. Thermodynamic Properties such as miscibility are very important when tribological testing is performed. A limiting factor with our tester was that it was not designed for CO2 testing, but for other conventional refrigerants and therefore made previously developed testing protocols non-applicable with CO2. Through a different approach and some modifications to our tester we were able to establish a protocol for testing under the presence of CO2. CO2 was then compared to R134a and the experimental results showed that it performs equally well.Air Conditioning and Refrigeration Project 13

    High-frequency techniques for RCS prediction of plate geometries and a physical optics/equivalent currents model for the RCS of trihedral corner reflectors

    Get PDF
    Part 1 of this report continues the investigation, initiated in previous reports, of scattering from rectangular plates coated with lossy dielectrics. The hard polarization coefficients given in the last report are incorporated into a model, which includes second- and third-order diffractions, for the coated plate. Computed results from this model are examined and compared to measured data. A breakdown of the contribution of each of the higher-order terms to the total radar cross section (RCS) is given. The effectiveness of the uniform theory of diffraction (UTD) model in accounting for the coating effect is investigated by examining a Physical Optics (PO) model which incorporates the equivalent surface impedance approximation used in the UTD model. The PO, UTD, and experimental results are compared. Part 2 of this report presents a RCS model, based on PO and the Method of Equivalent Currents (MEC), for a trihedral corner reflector. PO is used to account for the reflected fields, while MEC is used for the diffracted fields. Single, double, and triple reflections and first-order diffractions are included in the model. A detailed derivation of the E(sub theta)-polarization, monostatic RCS is included. Computed results are compared with finite-difference time-domain (FDTD) results for validation. The PO/MEC model of this report compares very well with the FDTD model, and it is a much faster model in terms of computational speed

    A physical optics/equivalent currents model for the RCS of trihedral corner reflectors

    Get PDF
    The scattering in the interior regions of both square and triangular trihedral corner reflectors is examined. The theoretical model presented combines geometrical and physical optics (GO and PO), used to account for reflection terms, with equivalent edge currents (EEC), used to account for first-order diffractions from the edges. First-order, second-order, and third-order reflection terms are included. Calculating the first-order reflection terms involves integrating over the entire surface of the illuminated plate. Calculating the second- and third-order reflection terms, however, is much more difficult because the illuminated area is an arbitrary polygon whose shape is dependent upon the incident angles. The method for determining the area of integration is detailed. Extensive comparisons between the high-frequency model, Finite-Difference Time-Domain (FDTD) and experimental data are used for validation of the radar cross section (RCS) of both square and triangular trihedral reflectors

    Theoretical Findings and Measurements on Planning a UHF RFID System inside a Room

    Get PDF
    This paper investigates the problem of improving the identification performance of a UHF RFID system inside a room. We assume static reader, passive tags and availability of commodity antennas. A ray-tracing propagation model is developed that includes multipath in 3D space. It is found that careful selection of reader antenna placement and tilting must be performed to control destructive interference effects. Furthermore, 3D coverage performance gains on the order of 10% are observed by implementing tags’ diversity. A device that successfully manipulates destructive interference is introduced. All theoretical findings are verified by measurements. Finally, a method to perform propagation measurements with commodity RFID hardware is demonstrated

    RCS Analysis of Plate Geometries, parts 1 and 2

    Get PDF
    High-frequency techniques for Radar Cross Section (RCS) prediction of plate geometries and a physical optics/equivalent currents model for the RCS of trihedral corner reflectors are addressed. In part 1, a Uniform Theory of Diffraction (UTD) model for the principal-plane radar cross section (RCS) of a perfectly conducting, rectangular plate coated on one side with an electrically thin, lossy dielectric is presented. In part 2, the scattering in the interior regions of both square and triangular trihedral corner reflectors are examined

    High-frequency techniques for RCS prediction of plate geometries and a physical optics/equivalent currents model for the RCS of trihedral corner reflectors, parts 1 and 2

    Get PDF
    Formulations for scattering from the coated plate and the coated dihedral corner reflector are included. A coated plate model based upon the Uniform Theory of Diffraction (UTD) for impedance wedges was presented in the last report. In order to resolve inaccuracies and discontinuities in the predicted patterns using the UTD-based model, an improved model that uses more accurate diffraction coefficients is presented. A Physical Optics (PO) model for the coated dihedral corner reflector is presented as an intermediary step in developing a high-frequency model for this structure. The PO model is based upon the reflection coefficients for a metal-backed lossy material. Preliminary PO results for the dihedral corner reflector suggest that, in addition to being much faster computationally, this model may be more accurate than existing moment method (MM) models. An improved Physical Optics (PO)/Equivalent Currents model for modeling the Radar Cross Section (RCS) of both square and triangular, perfectly conducting, trihedral corner reflectors is presented. The new model uses the PO approximation at each reflection for the first- and second-order reflection terms. For the third-order reflection terms, a Geometrical Optics (GO) approximation is used for the first reflection; and PO approximations are used for the remaining reflections. The previously reported model used GO for all reflections except the terminating reflection. Using PO for most of the reflections results in a computationally slower model because many integrations must be performed numerically, but the advantage is that the predicted RCS using the new model is much more accurate. Comparisons between the two PO models, Finite-Difference Time-Domain (FDTD) and experimental data are presented for validation of the new model

    Analytical approximations in modeling contacting rough surfaces

    Get PDF
    A critical examination of the analytical solution presented in the classic paper o

    Extracting summit roughness parameters from random Gaussian surfaces accounting for asymmetry of the summit heights

    Get PDF
    ABSTRACT The random Gaussian surface model proposed by Nayak is important to many statistical summit-based micro contact models. A Gaussian distribution is usually assumed for the summit heights as many surfaces have a Gaussian distribution of surface heights. In this work, based on Nayak's model, the skewness and kurtosis of the summit heights distribution are derived as a function of the bandwidth parameter α. The correctness of these two equations is verified using a numerical scheme that generates random Gaussian surfaces with various α values. Also, practical contact simulations are performed to demonstrate the significance of the proposed equations and also to show the error of using a Gaussian distribution versus a correct asymmetric distribution for the summit heights

    Overview of BIM integration into the Construction Sector in European Member States and European Union Acquis

    Get PDF
    The amount of information involved in any construction project and the necessity of control of time, cost and waste, has established Building Information Modelling (BIM) as an integral part of construction sector towards achieving adequate communication of information among various parties involved in construction projects. Moreover, it can be considered as a valuable tool for the optimum selection of materials, systems and design decisions, regarding not only the improve of a structure’s performance, but also in terms of reducing its carbon footprint during its life cycle. The study attempts to present the integration of BIM into the national legislation of European Member States, with a special focus on the energy related aspects of BIM analysis. This study performs an overview of the introduction of BIM into different aspects and requirements of the EU Member States building practices, through a comprehensive literature and legislation review of relative legislative documents of the construction sector. According to the findings of this overview study, the concept of BIM has already been incorporated in many aspects of the Acquis of EU Member States, which is recognized as a valuable tool to be exploited by the construction sector, however there is still room for development in this area. The study has revealed that especially in the energy assessment of the built environment, BIM applications are still lacking from the European Legislation. Examples and good practices of employing BIM for the implementation of the European Energy targets in the building sector are also presented and discussed. The findings of this study aim to shed light on the needs and requirements in the field of BIM development for the construction sector, as well as to indicate gaps and weaknesses of the European Member States Acquis towards harmonizing with BIM practices
    corecore