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ABSTRACT 

 
Compressors have been operating at increasingly severe conditions in order to raise efficiency, requiring them to 
function under starved lubricated conditions.  With the use of HFC refrigerants, which deteriorate natural protective 
“films,” materials with enhanced tribological properties have become necessary.  Extensive research has been 
conducted on the tribological performance of protective hard coatings, though very little in compressor simulated 
environments.  Controlled pin-on-disk experiments imitating the wrist pin-connecting rod interface were performed 
using a High Pressure Tribometer under unlubricated (oil-less) conditions.  Test specimens included 52100 steel 
wrist pins coated with either WC/C or multi-layer WC/C + DLC and cast iron disks.  Analysis of experiments 
investigating temperature effects and performance in various refrigerants including R134a, R410a, and R600a, was 
completed using energy dispersive x-ray microanalysis and surface profilometry.  Based on the research presented, it 
is concluded that coatings will become an essential component of modern compressors operating under starved and 
possibly oil-less conditions. 
 

1. INTRODUCTION 
 
The transition from chlorofluorocarbon (CFC) refrigerants to more environmentally friendly refrigerants such as 
hydrofluorcarbons (HFC), hydrocarbons (HC), and CO2, for use in compressors, has necessitated the quest for wear 
resistant and low friction materials and interfaces.  Because of the absence of chlorine which forms ferrous chloride 
layers on iron surfaces, the contact pressure limits allowed by HFCs have decreased from those of CFCs [Sung , 
1998; Lee and Oh., 2003].  Furthermore, interfaces must be able to withstand severe operating conditions caused by 
smaller clearances and increased speeds and loads of current and future compressors.  Also, the state of lubrication 
in many compressor components is limited and usually is in the boundary and mixed lubrication regimes [Pergande 
et al., 2004].  Additionally, an interest in transitioning towards oil-less compressors is desired to eliminate the 
negative effects on the thermodynamic efficiencies of refrigeration cycles.  Under these dry sliding conditions, one 
cannot rely on oxide formation and other surface reaction layers alone for enhanced tribological performance, and 
some form of protective coatings will be necessary. 
 
There is little research on the application of coatings in compressors and simulated environments and none was 
found to specifically investigate reciprocating motion such as that of a piston-type compressor.  In this study, the use 
of hard coatings is investigated for use in piston-type compressors at the connecting rod-wrist pin interface.  
Specifically, actual 52100 steel wrist pins from a compressor were coated with single-layer WC/C or multi-layered 
WC/C + DLC.  These coatings were chosen for their advertised and widely known low friction characteristics, high 
relative hardness, low surface energy, and, therefore, expected reduced adhesive and abrasive wear.  The areas of 
investigation presented in this paper are coating performance under severe conditions with temperature variation up 
to 120°C including the amplified effects of running-in at elevated temperatures, and coating performance in various 
refrigerants and inert environments. 
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2. EXPERIMENTAL PROCEDURE 
 
2.1. High Pressure Tribometer 
 
A specialized high pressure tribometer (HPT, Figure 1a) was used in this study to perform controlled tribological 
experiments and evaluate friction and wear characteristics while simulating typical operating conditions found in air 
conditioning and refrigeration compressors.  It uses an upper rotating spindle to which the disk is securely attached 
and a stationary lower fixture that holds the pin.  A power screw mechanism adjusts the vertical position of the 
lower fixture to open or close the pressure chamber and apply a controlled normal load ranging from 45 N to 4450 
N.  The lower fixture is mounted to a 6-axis force transducer which measures the forces in the x, y, and z linear 
directions to calculate the coefficient of friction for eccentric contacts or frictional torque for concentric contacts. 
Rotary or theta-axis control regulates upper spindle oscillation amplitude and frequency up to 5 Hz for oscillatory 
motion or up to 2000 rpm for unidirectional motion. 
 
The chamber temperature of the HPT can be varied from -20 to 140°C by pumping a heat transfer fluid through the 
upper spindle which is temperature regulated by an external unit. The chamber can also be vacuum evacuated and 
subsequently pressurized up to 1.72 MPa. The HPT is computer controlled and acquires data including in-situ 
normal load, friction coefficient, near contact temperature of the stationary specimen (approximately 2 mm below 
the surface), and electrical contact resistance while exporting the data for analysis. A detailed description of the HPT 
can be found in Yoon et al. (1998). 
 
The contact used in this study is a pin-on-disk geometry, where the disk is the upper rotating sample, and the pin is 
the lower stationary sample.  The pins are oriented to create a line contact as illustrated in Figure 1b and are 8 mm in 
diameter and 8 mm long with a 1 mm diameter hole for miniature thermocouple insertion.  Disks are 75 mm in 
diameter and 6.4 mm thick.  The pin is fixed within a special holder (Figure 1c) which is then placed in the fixture 
such that it is allowed to self-align to the disk surface ensuring a uniform contact.  Specimen holders can be fitted to 
the machine to simulate many different contacts at any diameter on the disk. 
 

±30°, 4.5Hz

Cast Iron Disk

Load

52100 Coated 
Steel Pin

Self-
alignment

Pressure
Chamber 

Rotation 

Normal Load

Pressure
Chamber 

Rotation 

Normal Load

(a)

(b)

(c)

±30°, 4.5Hz

Cast Iron Disk

Load

±30°, 4.5Hz

Cast Iron Disk

Load

52100 Coated 
Steel Pin

Self-
alignment

52100 Coated 
Steel Pin

Self-
alignment

Pressure
Chamber 

Rotation 

Normal Load

Pressure
Chamber 

Rotation 

Normal Load

(a)

(b)

(c)  
 

Figure 1:  (a) High Pressure Tribometer (HPT), (b) illustration of pin-on-disk line contact, and (c) self alignment pin 
holder 
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Figure 2:  X5,000 cross-sectional SEM image of (a) WC/C and (b) WC/C + DLC coatings on 52100 steel pins 

 
2.2. Test Specimens and Coatings 
 
Single-layer WC/C and multi-layer WC/C + DLC coatings were acquired from a leading coating manufacturer for 
this testing. WC/C, an amorphous metal-carbon coating (a-C:H:W), was chosen based on its successful application 
in areas where low friction (μ < 0.2) is required.  Although the performance of coatings usually varies due to the 
adhesion layers used, the deposition method, and their surface roughness, according to the literature, WC/C has been 
found to perform similarly to harder, pure DLC coatings in terms of frictional characteristics and wear resistance 
[Meerkamm et al., 1999].  Furthermore, the abrasive wear resistance of WC/C coatings has been found to be as high 
as TiN, a common coating unsuitable for low friction applications with a friction coefficient of 0.4 or higher 
[Wanstrand et al., 1999].  Good wear resistance is a result of the alternating tungsten carbide and carbon phases in 
layers a few atoms thick, which can also provide good running-in characteristics. 
 
Multi-layer coatings are often used to improve tribological performance of the individual constituents.  They can 
provide increased adhesion, increased load capacity, decreased surface stresses, and resistance to crack propagation 
[Holmberg et al., 2000].  The WC/C + DLC coating was chosen due to the low friction and high wear resistance of 
each individual coating.  However, it has also been shown that the DLC/WC pairing performs particularly well 
where cyclic loading is prevalent, such as gears and bearings [Holmberg et al., 2000], making it a good candidate for 
piston-type compressors.  To promote coating adhesion to the substrate in all cases, a chromium interlayer was 
applied with a nominal thickness of 0.5 μm.  The thickness of the single-layer WC/C coating was 2.6 μm while 
WC/C + DLC was 1.6 μm + 2.4 μm, respectively.  Thickness verification measurements of each coating were 
determined by cross-sectional SEM, and such measurements are depicted in Figure 2. 
 
Nanoindentation measurements on the coated and uncoated pins were also performed to measure their nanohardness 
and reduced Young’s modulus values.  A Hysitron TriboScope® nanoindenter was used in conjunction with a 
Berkovich indenter tip to obtain contact depths of 50-200 nm and mechanical properties were determined using the 
Oliver and Pharr method [Oliver and Pharr, 2004].  The nanohardness and reduced modulus of bare 52100 steel 
were 12 GPa and 205 GPa, respectively, but higher than the bulk hardness of 7.3 GPa (converted from a hardness of 
62 HRC).  WC/C hardness was similar at 10.5–12.5 GPa while its reduced modulus ranged from 90-125 GPa.  The 
hardness of the WC/C + DLC coating is equal to that of just the DLC overcoat and ranges from 25-27 GPa while the 
reduced modulus was between 200 and 220 GPa.  The hardness values of the substrates and coating are summarized 
in Table 1 and also agree with published values and manufacturer specifications [Guo and Warren, 2005; Gubisch  
et al., 2005]. 
 

Table 1:  Mechanical properties and roughness of substrates and coatings 
 

Material Hardness (GPa) Reduced Modulus (GPa) Roughness, Rq (nm) 
Uncoated 52100 Steel 12 205 36 

Dura-Bar G2 gray cast iron 1.5-31 1242 300-500 
WC/C 8-10 90-125 55 

WC/C + DLC 25-27 200-220 45 
1Converted from Brinell hardness; 2Bulk tensile modulus 
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2.3. Tribological Testing 
 
Prior to and following testing, specimens were ultrasonically cleaned in acetone for 10 minutes and subsequently 
rinsed with 2-propanol.  All tribological experiments were performed under a constant normal load and oscillating 
frequency in order to evaluate wear and running-in.  Due to the high wear resistance of WC/C, it was necessary to 
use higher contact pressures to obtain measurable wear with accelerated experiments.  Thus, tests were conducted 
with loads of 445 N to produce a maximum Hertzian contact pressure of 623 MPa.  All tests were performed at a 
frequency of 4.5 Hz, amplitude of 30 degrees, and an average wear track diameter of 47.6 mm to produce average 
and maximum linear velocities of 0.21 m/s and 0.33 m/s, respectively.  To investigate the use of this coating in oil-
less compressors, tests were primarily performed in R134a at 172 kPa environmental pressure and no lubricant while 
WC/C + DLC was also tested in R410a, R600a, and N2 at the same pressure to investigate environmental effects. 
 
As a baseline, uncoated experiments were performed at a lower normal load of 200 N for 10 minutes, to avoid 
scuffing.  Using coated pins, test durations of 21 minutes were performed, excluding tests at 23°C, which were run 
for 30 minutes.  These times provided measurable wear from which performance distinction could be made without 
observing scuffing failures.  For the first minute of each test with a coated pin, the normal load was set to half that of 
the remaining test load to aid running-in.  In the absence of this initial lower load at the beginning of the running-in 
process, several immediate coating failures had occurred. 
 
At tested chamber temperatures above 60°C, a progressively increasing running-in period was observed where 
friction coefficients of up to 0.4 were measured, and to study this behavior, WC/C was tested at 120°C and 222 N 
for 5, 10, and 21 minutes.  Following all tests, wear was quantified using two profilometric scans on each disk and 
pin, of which typical representations are shown in Figure 3, along side micrographs of tested specimens.  As shown 
in the figure, to precisely determine pin wear, the worn pin profile was subtracted from the original measurement of 
the cylindrical pin shape.  The areas of the two scans were averaged and multiplied by the pin length to determine 
the wear volume.  Also following testing, specimen roughness scans were completed to correlate roughness to the 
running-in process. 
 

Wear Track

(a) (b)

Worn area

250 µm 5 mm

(c) (d)

Wear Track

(a) (b)

Worn area

250 µm250 µm 5 mm5 mm

(c) (d)  
Figure 3:  Images and profilometric scans of typical worn (a) pin and (b) disk.  The white arrows on the pin 

micrograph denote the scan directions of Figure 7 while the black arrows indicate the sliding direction. 
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3. RESULTS AND DISCUSSION 
 
3.1. Temperature Variation 
 
To obtain a baseline from which to compare coating performance, tests were performed with uncoated pins at room 
temperature.  The aim was to determine at which load the uncoated tests could be run without scuffing failure.  
Uncoated pins were only able to support a 200 N normal load for ten minute tests and exhibited steady-state friction 
coefficients of ~0.34.  Steady-state was reached after four minutes of a lower friction running-in period with an 
initial friction coefficient of ~0.2.  The cause of this running-in period is likely a result of adhesive wear increasing 
roughness of both surfaces and subsequently the abrasive wear and friction coefficient as evidenced by material 
transfer to the pin as well as significant wear debris from the disk.  No measurable pin wear was observed as mostly 
material transfer from the disk occurred.  Disk wear depths ranged from 1-2 µm, in contrast to the behavior 
exhibited in the coated experiments, where measurable disk wear was not observed. 
 
Due to insignificant disk wear produced in coated experiments (depths < 0.5 µm, indistinguishable from the disk 
roughness) while pin wear became significant, only pin wear was quantified.  Steady-state friction coefficient values 
and wear rates, defined as wear volume per total distance, are depicted in Figure 4 where error bars represent the 
minimum and maximum values for a given condition.  As the error bars indicate, test repeatability was high.  
Steady-state friction coefficients are shown to decrease with temperature while wear rates initially decrease and then 
increase at the highest temperature tested.  At room temperature, no significant running-in period was observed, with 
initial friction coefficient values of 0.13.  This is likely due to low adhesive wear from the low surface energy of the 
coating while the disk surface was quickly polished.  Wear is significantly less for WC/C + DLC than WC/C due to 
the multi-layer coating’s higher hardness and, therefore, resistance to abrasive wear. 
 
At temperatures of 60°C and above, however, adhesive wear begins to increase, increasing the pin wear rate.  As 
wear of the pin increases with temperature, it is postulated that a transfer film on the disk from the coating begins to 
form, more so with WC/C that WC/C + DLC, causing the steady-state friction coefficient to decrease, which is in 
agreement with the literature [Erdemir et al., 1995; Holmberg et al., 2000].  Also contributing to the friction 
decrease is a higher polishing rate of the disk surface at increased temperatures.  It is important to note, however, 
that disk wear is still not measurable while pin wear rates decreased by 9% in the transition from room temperature 
to 60°C for WC/C and 11% for WC/C + DLC.  An even higher wear rate decrease is exhibited from 60°C to 80°C 
for WC/C, but steady-state friction coefficients remained similar.  Increased wear and similar friction is due to a 
transition period from abrasive to adhesive wear in this temperature range.  An increase in temperature to 120°C 
produces a lower steady-state friction coefficient for WC/C while the transition to adhesive wear increases the pin 
wear rate by over 50% from values at 80°C.  The increase in adhesive wear is evidenced by greater material flow on 
the coating surface at higher temperatures, observed with SEM, which also causes pronounced running-in periods. 
 
3.2. Running-in at Elevated Temperatures 
 
It was desired to complete all tests with a load of 445 N, but at 120°C, instant failure occurred.  To obtain tests of 
the same duration as those discussed previously, the normal load was reduced to 222 N.  During these tests, a very 
pronounced running-in period was observed with friction coefficients reaching in excess of 0.4, but would then 
attain steady-state values of less than 0.05.  To study this running-in behavior, additional tests were performed that 
 

(a)

(b)

(a)

(b)

 
 

Figure 4:  (a) Steady state coefficient of friction and (b) pin wear rate versus temperature.  Error bars represent 
maximum and minimum values for a particular condition. 
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were stopped at the friction coefficient peak (5 minutes) and at the end of the running-in period (10 minutes).  Tests 
were repeatable and plots are shown with load and friction evolution in Figure 5, exhibiting the same trend of high 
values in running-in and attaining steady-state thereafter.  Notice also in Figure 5 that friction immediately reaches 
steady-state at 23°C, while running-in friction coefficients increase with temperature. 
 
As postulated, nearly all pin wear occurred during the running-in period.  The pin wear volume of the 10 minute test 
was nearly identical to those of the 21 minutes tests at 2.35 x 10-3 mm3.  Pin wear volume at 5 minutes, was slightly 
less at 1.67 x 10-3 mm3, suggesting that the majority of the wear occurs during the first half of the running-in period.  
Illustrating material transfer to and from the disk, SEM images captured at the edge of the pin wear are displayed in 
Figure 6.  The image taken after the 5 minute test shows that only polishing of the pin occurred with possibly some 
material transfer from the coating to the disk.  However, the SEM image taken after the 21 minute test shows 
possible coating material flow or material transfer from the disk.  In all cases investigated in this work, the coating 
was never fully worn through. 
 
To further examine running-in, profilometric scans of the pins and disks were taken perpendicular to the sliding 
direction within the central 4 mm of the wear scar.  In Figure 7, the profile of a virgin pin is shown for reference 
along with scans taken after the 5 minute and full length tests.  A difference is clearly seen in that during the first 5 
minutes, pin micro-roughness significantly decreases through the shearing of asperity peaks, while an increase in pin 
micro-roughness is observed at 21 minutes due to conforming to the disk.  However, overall roughness decreased 
from Rq = 87 nm at 5 minutes to Rq = 73 nm at 21 minutes as a result of polishing.  A similar but less pronounced 
trend is apparent from the 5 to 10 minute tests. 
 
Profile scans of the disks provide further insight as to the cause of running-in with similar justifications as with the 
pin profiles.  Specifically, the virgin roughness and skewness of the disks in the wear track area (measured 
perpendicular to the sliding direction with a 4 mm scan length) were Rq = 300 nm and Sk = -0.69.  After the 5 and 
10 minute tests, the negative skewness increased significantly to -2.62 and -2.85, respectively, indicating the 
removal of asperity peaks (polishing).  At 21 minutes, the negative skewness increased slightly to a value of -2.92 
while the Rq value decreased to 270 nm.  These values along with the evolution of the pin wear profile demonstrate 
that pin and disk surfaces must conform to each other through polishing and material transfer to reduce abrasive 
friction and complete the running-in process.  To reduce the length of the running-in period, it is recommended that 
the contacting surfaces be polished before and after coating for actual engineering applications, such as that in a 
compressor, or the coating may not survive the running-in period to achieve steady-state. 
 
 

5 minutes
10 minutes
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23°C
60°C

80°C
120°C

(a)

(b)

(c)

5 minutes
10 minutes
21 minutes

23°C
60°C

80°C
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(a)

(b)

(c)

 
 

Figure 5:  (a) Load and (b) friction coefficient, μ, evolution for WC/C with test durations of 5, 10, and, 21 minutes 
(full length).  (c) Comparison running-in characteristics in terms of the friction coefficient of WC/C for each 

temperature tested.  Note the test repeatability and apparent noise caused by oscillatory motion. 
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Figure 6:  X1,000 SEM images at the edge of pin wear for 5 minute test and full length, 21 minute test at 120°C. 
 

(a)

(b)

(c)

(a)

(b)

(c)

 
 

Figure 7:  Representative (a) virgin pin, (b) pin wear after 5 minutes, and (c) pin wear after a full length, 21 minute 
test.  Scans were performed perpendicular to the sliding direction. 

 
3.3. Refrigerant Variation 
 
Due to the absence of published literature on refrigerant comparison in tribologial applications, it was unsure how 
each refrigerant would perform relative to each other.  It was found that friction coefficients for R134a, R410a, and 
N2 are similar in the first few minutes with the WC/C + DLC coating, but then scuffing occurred in the N2 
environment at a little over four minutes.  At around five minutes, the R410a interface exhibits decreasing friction 
indicating that it was in a state of running-in.  It reaches steady-state with slightly lower friction than in the R134a 
environment, but the friction in the R600a environment remains the lowest for the entire test.  Steady-state friction 
coefficients for each environment are displayed in Figure 8a.  Note that the friction coefficient for N2 is the average 
prior to scuffing.  Chemical analyses were not performed to detect compounds that may improve friction 
characteristics, but R600a has the highest percentage of hydrogen atoms per unit volume and Fontaine et al. (2004) 
reported that H2 has a healing effect on hydrogenated DLC coatings in tribological testing.  Conversely, R410a 
produced the least amount of wear with R600a being the second best.  Reasons for this are unknown until further 
chemical analyses are completed.  Relative pin wear rates are given in Figure 8b.   Also, note that wear is not 
reported for N2 due to extreme material transfer with scuffing failure. 
 

(a) (b)(a) (b)  
Figure 8:  (a) Average friction coefficient and (b) average pin wear rate produced with each environment.  Error bars 

represent maximum and minimum values for a particular condition. 
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4. CONCLUSIONS 
 
An experimental investigation of a single-layer WC/C and multi-layer WC/C + DLC coating for oil-less 
compressors at various temperatures and in multiple environments was performed.  Unlubricated, uncoated 
experiments exhibiting high friction and wear suggest that protective films such as hard coatings are necessary to 
enable the use of oil-less compressors for increased efficiency. 
 
The coatings used in this study enhanced tribological performance greatly by reducing the friction coefficient by 
factors of 3.5 and almost ten for WC/C and WC/C + DLC, respectively, at high temperatures and virtually 
eliminating wear of the uncoated disk.  WC/C + DLC consistently showed the least wear while friction for WC/C is 
slightly higher at lower temperatures, a trend that is reversed at elevated temperatures.  The friction coefficients 
decreased with temperature while wear decreased and then increased following a critical point in temperature where 
running-in wear becomes more severe.  Following running-in, minimal additional wear occurs, indicating the 
advantage of using coatings with good running-in characteristics and reducing the initial roughness of the interface 
as much as possible.  Experiments in R410a produce the least amount of wear, whereas those in R600a have the 
lowest friction, possibly due to the abundance of hydrogen in the environment. 
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