73 research outputs found

    Interaction regimes for oppositely charged plates with multivalent counterions

    Get PDF
    Within a mean-field treatment of the interaction between two oppositely charged plates in a salt-free solution, the distance at which a transition from an attractive to a repulsive regime appears can be computed analytically. The mean-field description, however, breaks down under strong Coulombic couplings, which can be achieved at room temperature with multivalent counterions and highly charged surfaces. Making use of the contact theorem and simple physical arguments, we propose explicit expressions for the equation of state in several situations at short distances. The possibility of Bjerrum pair formation is addressed and is shown to have profound consequences on the interactions. To complete the picture, we consider the large-distance limit, from which schematic phase diagram discriminating attractive from repulsive regions can be proposed

    Multicomponent flow on curved surfaces : A vielbein lattice Boltzmann approach

    Get PDF
    We develop and implement a novel finite difference lattice Boltzmann scheme to study multicomponent flows on curved surfaces, coupling the continuity and Navier-Stokes equations with the Cahn-Hilliard equation to track the evolution of the binary fluid interfaces. The standard lattice Boltzmann method relies on regular Cartesian grids, which makes it generally unsuitable to study flow problems on curved surfaces. To alleviate this limitation, we use a vielbein formalism to write down the Boltzmann equation on an arbitrary geometry, and solve the evolution of the fluid distribution functions using a finite difference method. Focussing on the torus geometry as an example of a curved surface, we demonstrate drift motions of fluid droplets and stripes embedded on the surface of such geometries. Interestingly, they migrate in opposite directions: fluid droplets to the outer side while fluid stripes to the inner side of the torus. For the latter we demonstrate that the global minimum configuration is unique for small stripe widths, but it becomes bistable for large stripe widths. Our simulations are also in agreement with analytical predictions for the Laplace pressure of the fluid stripes, and their damped oscillatory motion as they approach equilibrium configurations, capturing the corresponding decay timescale and oscillation frequency. Finally, we simulate the coarsening dynamics of phase separating binary fluids in the hydrodynamics and diffusive regimes for tori of various shapes, and compare the results against those for a flat two-dimensional surface. Our finite difference lattice Boltzmann scheme can be extended to other surfaces and coupled to other dynamical equations, opening up a vast range of applications involving complex flows on curved geometries

    Short-lived AUF1 p42-binding mRNAs of RANKL and BCL6 have two distinct instability elements each.

    Get PDF
    Regulation of mRNA stability by RNA-protein interactions contributes significantly to quantitative aspects of gene expression. We have identified potential mRNA targets of the AU-rich element binding protein AUF1. Myc-tagged AUF1 p42 was induced in mouse NIH/3T3 cells and RNA-protein complexes isolated using anti-myc tag antibody beads. Bound mRNAs were analyzed with Affymetrix microarrays. We have identified 508 potential target mRNAs that were at least 3-fold enriched compared to control cells without myc-AUF1. 22.3% of the enriched mRNAs had an AU-rich cluster in the ARED Organism database, against 16.3% of non-enriched control mRNAs. The enrichment towards AU-rich elements was also visible by AREScore with an average value of 5.2 in the enriched mRNAs versus 4.2 in the control group. Yet, numerous mRNAs were enriched without a high ARE score. The enrichment of tetrameric and pentameric sequences suggests a broad AUF1 p42-binding spectrum at short U-rich sequences flanked by A or G. Still, some enriched mRNAs were highly unstable, as those of TNFSF11 (known as RANKL), KLF10, HES1, CCNT2, SMAD6, and BCL6. We have mapped some of the instability determinants. HES1 mRNA appeared to have a coding region determinant. Detailed analysis of the RANKL and BCL6 3'UTR revealed for both that full instability required two elements, which are conserved in evolution. In RANKL mRNA both elements are AU-rich and separated by 30 bases, while in BCL6 mRNA one is AU-rich and 60 bases from a non AU-rich element that potentially forms a stem-loop structure

    On the role of composition entropies in the statistical mechanics of polydisperse systems

    Get PDF
    Polydisperse systems are commonly encountered when dealing with soft matter in general or any non-simple fluid. Yet their treatment within the framework of statistical thermodynamics is a delicate task as the latter has been essentially devised for simple—non-fully polydisperse—systems. In this paper, we address the issue of defining a non-ambiguous combinatorial entropy for these systems. We do so by focusing on the general property of extensivity of the thermodynamic potentials and discussing a specific mixing experiment. This leads us to introduce the new concept of composition entropy for single phase systems that we do not assimilate to a mixing entropy. We then show that they do not contribute to the thermodynamics of the system at a fixed composition and prescribe to subtract ln N! from the free energy characterizing a system however polydisperse it can be. We then re-derive general expressions for the mixing entropy between any two polydisperse systems and interpret them in term of distances between probability distributions, showing that one of these metrics relates naturally to a recent extension of Landauer's principle. We then propose limiting expressions for the mixing entropy in the case of mixing with equal proportions in the original compositions and finally address the challenging problem of chemical reactions

    Stimulating VAPB-PTPIP51 ER-mitochondria tethering corrects FTD/ALS mutant TDP43 linked Ca2+ and synaptic defects

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this recordData availability: The datasets used and/or analysed during the current study are available from the corresponding authors on reasonable request.Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are clinically linked major neurodegenerative diseases. Notably, TAR DNA-binding protein-43 (TDP43) accumulations are hallmark pathologies of FTD/ALS and mutations in the gene encoding TDP43 cause familial FTD/ALS. There are no cures for FTD/ALS. FTD/ALS display damage to a broad range of physiological functions, many of which are regulated by signaling between the endoplasmic reticulum (ER) and mitochondria. This signaling is mediated by the VAPB-PTPIP51 tethering proteins that serve to recruit regions of ER to the mitochondrial surface so as to facilitate inter-organelle communications. Several studies have now shown that disrupted ER-mitochondria signaling including breaking of the VAPB-PTPIP51 tethers are features of FTD/ALS and that for TDP43 and other familial genetic FTD/ALS insults, this involves activation of glycogen kinase-3β (GSK3β). Such findings have prompted suggestions that correcting damage to ER-mitochondria signaling and the VAPB-PTPIP51 interaction may be broadly therapeutic. Here we provide evidence to support this notion. We show that overexpression of VAPB or PTPIP51 to enhance ER-mitochondria signaling corrects mutant TDP43 induced damage to inositol 1,4,5-trisphosphate (IP3) receptor delivery of Ca2+ to mitochondria which is a primary function of the VAPB-PTPIP51 tethers, and to synaptic function. Moreover, we show that ursodeoxycholic acid (UDCA), an FDA approved drug linked to FTD/ALS and other neurodegenerative diseases therapy and whose precise therapeutic target is unclear, corrects TDP43 linked damage to the VAPB-PTPIP51 interaction. We also show that this effect involves inhibition of TDP43 mediated activation of GSK3β. Thus, correcting damage to the VAPB-PTPIP51 tethers may have therapeutic value for FTD/ALS and other age-related neurodegenerative diseases.Medical Research Council (MRC)Alzheimer’s Disease SocietyAlzheimer’s Research U

    Gibbs' Paradox according to Gibbs and slightly beyond

    Get PDF
    The so-called Gibbs paradox is a paradigmatic narrative illustrating the necessity to account for the N! ways of permuting N identical particles when summing over microstates. Yet, there exist some mixing scenarios for which the expected thermodynamic outcome depends on the viewpoint one chooses to justify this combinatorial term. After a brief summary on Gibbs' paradox and what is the standard rationale used to justify its resolution, we will allow ourself to question from a historical standpoint whether the Gibbs paradox has actually anything to do with Gibbs' work. In so doing, we also aim at shedding a new light with regards to some of the theoretical claims surrounding its resolution. We will then turn to the statistical thermodynamics of discrete and continuous mixtures and introduce the notion of composition entropy to characterise these systems. This will enable us to address, in a certain sense, a "curiosity" pointed out by Gibbs in a paper published in 1876. Finally, we will �nish by proposing a connexion between the results we propose and a recent extension of the Landauer bound regarding the minimum amount of heat to be dissipated to reset one bit of memory

    Pathogenic p62/SQSTM1 mutations impair energy metabolism through limitation of mitochondrial substrates

    Get PDF
    Abnormal mitochondrial function has been found in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Mutations in the p62 gene (also known as SQSTM1) which encodes the p62 protein have been reported in both disorders supporting the idea of an ALS/FTD continuum. In this work the role of p62 in energy metabolism was studied in fibroblasts from FTD patients carrying two independent pathogenic mutations in the p62 gene, and in a p62-knock-down (p62 KD) human dopaminergic neuroblastoma cell line (SH-SY5Y). We found that p62 deficiency is associated with inhibited complex I mitochondrial respiration due to lack of NADH for the electron transport chain. This deficiency was also associated with increased levels of NADPH reflecting a higher activation of pentose phosphate pathway as this is accompanied with higher cytosolic reduced glutathione (GSH) levels. Complex I inhibition resulted in lower mitochondrial membrane potential and higher cytosolic ROS production. Pharmacological activation of transcription factor Nrf2 increased mitochondrial NADH levels and restored mitochondrial membrane potential in p62-deficient cells. Our results suggest that the phenotype is caused by a loss-of-function effect, because similar alterations were found both in the mutant fibroblasts and the p62 KD model. These findings highlight the implication of energy metabolism in pathophysiological events associated with p62 deficiency

    Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay

    Get PDF
    BACKGROUND: In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD) plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate. RESULTS: In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE proteomics technology to examine the changes in protein expression induced in HeLa cells by UPF1 knockdown. QPCR based validation of the corresponding mRNAs, in response to both UPF1 knockdown and cycloheximide treatment, identified 17 bona fide NMD targets. Most of these were associated with bioinformatically predicted NMD activating features, predominantly upstream open reading frames (uORFs). Strikingly, however, the majority of transcripts up-regulated by UPF1 knockdown were either insensitive to, or even down-regulated by, cycloheximide treatment. Furthermore, the mRNA abundance of several down-regulated proteins failed to change upon UPF1 knockdown, indicating that UPF1`s role in regulating mRNA and protein abundance is more complex than previously appreciated. Among the bona fide NMD targets, we identified a highly conserved AS-NMD event within the 3` UTR of the HNRNPA2B1 gene. Overexpression of GFP tagged hnRNP A2 resulted in a decrease in endogenous hnRNP A2 and B1 mRNA with a concurrent increase in the NMD sensitive isoforms. CONCLUSIONS: Despite the large number of changes in protein expression upon UPF1 knockdown, a relatively small fraction of them can be directly attributed to the action of NMD on the corresponding mRNA. From amongst these we have identified a conserved AS-NMD event within HNRNPA2B1 that appears to mediate autoregulation of HNRNPA2B1 expression levels

    Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements

    Full text link
    Eukaryotic cells rely on a surveillance mechanism known as the spindle checkpoint to ensure accurate chromosome segregation. The spindle checkpoint prevents sister chromatids from separating until all kinetochores achieve bipolar attachments to the mitotic spindle. Checkpoint proteins tightly inhibit the anaphase-promoting complex (APC), a ubiquitin ligase required for chromosome segregation and progression to anaphase. Unattached kinetochores promote the binding of checkpoint proteins Mad2 and BubR1 to the APC-activator Cdc20, rendering it unable to activate APC. Once all kinetochores are properly attached, however, cells inactivate the checkpoint within minutes, allowing for the rapid and synchronous segregation of chromosomes. How cells switch from strong APC inhibition before kinetochore attachment to rapid APC activation once attachment is complete remains a mystery. Here we show that checkpoint inactivation is an energy-consuming process involving APC-dependent multi-ubiquitination. Multi-ubiquitination by APC leads to the dissociation of Mad2 and BubR1 from Cdc20, a process that is reversed by a Cdc20-directed de-ubiquitinating enzyme. The mutual regulation between checkpoint proteins and APC leaves the cell poised for rapid checkpoint inactivation and ensures that chromosome segregation promptly follows the completion of kinetochore attachment. In addition, our results suggest a mechanistic basis for how cancer cells can have a compromised spindle checkpoint without corresponding mutations in checkpoint genes
    corecore