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The so-called Gibbs paradox is a paradigmatic narrative illustrating the necessity to account for
the N! ways of permuting N identical particles when summing over microstates. Yet, there exist
some mixing scenarios for which the expected thermodynamic outcome depends on the viewpoint one
chooses to justify this combinatorial term. After a brief summary on the Gibbs’ paradox and what is
the standard rationale used to justify its resolution, we will allow ourself to question from a historical
standpoint whether the Gibbs paradox has actually anything to do with Gibbs’ work. In so doing,
we also aim at shedding a new light with regards to some of the theoretical claims surrounding its
resolution. We will then turn to the statistical thermodynamics of discrete and continuous mixtures
and introduce the notion of composition entropy to characterise these systems. This will enable us to
address, in a certain sense, a ”curiosity” pointed out by Gibbs in a paper published in 1876. Finally,
we will finish by proposing a connexion between the results we propose and a recent extension of
the Landauer bound regarding the minimum amount of heat to be dissipated to reset one bit of
memory.

I. INTRODUCTION

The Gibbs paradox appears with various degrees of em-
phasis — ranging from simple comments or practice ques-
tions to dedicated chapters — in most physics textbooks
involved with thermodynamics and statistical mechanics
[1–28]. It is often presented as the theoretical inabil-
ity of classical statistical mechanics, as initially devel-
oped by Gibbs, to be fully compatible with thermody-
namics which it has yet set out to retrieve in the large
system limit. The standard exposition usually starts
with the classical canonical partition function following,
in essence, Gibbs’ 1902 treatment [29]:

Q(N,V, β) =

∫ N∏
i=1

(
d3rid

3pi
ξ3

)
e−βH(r1,p1,..,rN ,pN ) (1)

In Eq. (1), Q(N,V, β) is the partition function of a sys-
tem of N identical particles confined in a volume V at
fixed inverse temperature β = 1/kBT , ri, pi and d3rid

3pi
are respectively the position, momentum and phase space
measure of particle i and H is the hamiltonian of the
system. The parameter ξ, initially introduced by Gibbs,
has the dimension of an action so as to ensure that the
partition function is dimensionless. Although it is often
identified to the Planck constant h, it doesn’t play any
role in the thermodynamic properties derivable from Eq.
(1) and, as a consequence, its actual value matters not
here. In the case of a monoatomic ideal gas the partition
function (1) reads:

QIG(N,V, β) = V N
(

2πm

βξ2

)3N/2

(2)

from which one derives the corresponding free energy in
the thermodynamic limit (where the Stirling approxima-

tion is being used):

βAIG(N,V, β) ≡ − lnQIG(N,V, β) = −SIG(N,V, β)

kB

= −N lnV − 3

2
N ln

2πmkBT

ξ2
(3)

From Eq. (3) one can find an anomaly in the paradig-
matic case of the mixing of two ideal gases in the same
conditions of pressure and temperature.

N/2, V/2, T N/2, V/2, T N/2, V/2, TN/2, V/2, T

N/2, V, T

N/2, V, T
N, V, T

Figure 1. Mixing of gases. Schematic representation of the
mixing by diffusion between two gases. Case A: mixing of two
gases each made of different particle species. Case B: mixing
of two gases made of the same particle species.

Indeed, as illustrated in Fig. 1, two cases can a priori
be distinguished: either the gases to be mixed are differ-
ent (case A in Fig. 1) or they are identical (case B in
Fig. 1). In either case, one finds that, according to Eq.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/155777915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

(3), the entropy of mixing reads:

∆SIG = Sf − Si = 2
N

2
kB ln

Vfin
Vin

= NkB ln 2 (4)

where the final volume Vfin of the box for each gas
is double that of the initial volume Vin they were in
Vfin = 2Vin. In case A, the result of Eq. (4) is consis-
tent with the standard thermodynamics result one can
obtain by considering the mixing process as a free ex-
pansion of either gas into a volume of double its initial
size [19]. In case B, however, we see from Fig. 1B that
there is no change in the thermodynamic state of the
system upon mixing and, therefore, the corresponding
entropy change should be zero. As it stands, Eq. (3)
thus leads to some predictions at odds with the theory
of thermodynamics. This is this particular inconsistency
which is often referred to as Gibbs’ paradox of mixing.
More generally, the Gibbs paradox can also refer to the
technical root cause of Gibb’s paradox of mixing; namely
the fact that the free energy (and entropy) described by
Eq. (3) are not extensive quantities contrary to their
counterparts in thermodynamics. In fact, the failure of
case B is easily seen to be attributable to the fact that,
according to Eq. (3), SIG(N,V, β) 6= 2SIG(N/2, V/2, β).
The technical resolution of this problem is surprisingly
very simple: one introduces a slightly different partition
function Q̃(N,V, β) that reads:

Q̃(N,V, β) ≡ 1

N !
Q(N,V, β) (5)

and defines equivalently a free energy and entropy, which
for an ideal gas give:

βÃIG(N,V, β) ≡ − ln Q̃IG(N,V, β) = − S̃IG(N,V, β)

kB

= −N ln
V

N
− 3

2
N ln

2πmkBT

ξ2
(6)

The mixing entropy between two gases as in Fig. 1 be-
comes then:

∆S̃IG = NkB ln
ρin
ρfin

(7)

where ρin and ρfin are respectively the initial and fi-
nal number densities of the gases undergoing the mix-
ing process. In case A, ρin = 2ρfin and Eq. (6) gives
back an entropy of mixing of kB ln 2 per particle. In case
B, the number density is unchanged between the final
and initial states i.e. ρin = ρfin and therefore Eq. (6)
gives zero mixing entropy. Equivalently, one finds that
S̃IG(N,V, β) = 2S̃IG(N/2, V/2, β), illustrating that the
Gibbs paradox has been dealt with.
That one must mathematically divide Eq. (1) by N !
to retrieve extensive thermodynamic potentials is mostly
uncontroversial [30]. It is a different story when it comes
to justifying why it must be done on a priori grounds.

By far, the most widely accepted account consists in in-
terpreting Eq. (5) as the semi-classical limit of a full
quantum partition function whereby the N ! is a signa-
ture of the fermionic or bosonic character of the identical
particles comprising the system [1–20]. This rational is
often accompanied by specific claims with regards to the
theoretical foundations of classical statistical thermody-
namics. As a matter of fact, that one must divide Eq.
(1) by N ! is then considered to be evidence:

C1 That there is a failure of classical thermodynamics
which must be supplemented by quantum reasoning
to be fully consistent (see e.g. Ref. [7]).

C2 That there is a failure of classical mechanics, as
a theoretical framework, for which the notion of
indistinguishability is ultimately foreign (see e.g.
Refs. [2, 7, 12]).

C3 That the quantum indistinguishable character of
identical particles is necessary to account for the
1/N ! factor and thus for the extensivity of classical
thermodynamics potentials (see e.g. Refs. [11, 17–
19]).

Again, the author wishes to stress that these claims are
made with regards to the foundations of classical statis-
tical thermodynamics and not quantum statistical ther-
modynamics. It is also worth noting that the necessity
of the quantum indistinguishability to justify the 1/N !
factor in Eq. (6) implies that:

C4 In a system where no two particles are the same,
one has no reason to divide Eq. (1) by N ! and the
corresponding thermodynamic potentials cannot be
extensive.

Of course C4 is inconsequential for systems of identical
particles — and is therefore never stated explicitly — but
it will be important for some of the arguments we wish
to make in one of the upcoming sections.

There also exist a minority of textbook accounts of
the 1/N ! factor which do not necessitate the quantum
indistinguishability argument [21–24, 26, 27] and which,
instead, appeal to a classical or an epistemic rationale
which resonates — intentionally or not — with Gibbs’
original work on the topic.

It is the aim of this article to delineate in which sense
— if at all — the Gibbs paradox, as explained above, is a
problem for the classical foundation of classical statistical
mechanics and if there are not other foundational prob-
lems for statistical mechanics which may have deserved
more attention and which can be explained away if one
adopts an epistemic interpretation of the 1/N ! factor in
Eq. (5).

The structure of the article is as follows: in section
II, we will focus on Gibbs’ insights on the so-called
Gibbs’ paradox based on two of its major publications on
the thermodynamics and statistical mechanics of mixing,
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namely his 1876 article On the Equilibrium of heteroge-
nous substances [31] and his 1902 book on the Elementary
principles in statistical mechanics [29], and will refute the
popular theses C1 and C2 that the classical physics of the
time was not equipped with the conceptual tools to ad-
dress the Gibbs’ paradox. We will also stress a particular
issue pointed out by Gibbs whose strangeness doesn’t dis-
appear with the quantum explanation. Section III will
assess the claim C3, of the necessity of quantum indistin-
guishability to give a rational account of classical statis-
tical mechanics, by looking at ideal continuous mixture
systems. We will propose that either C3 is false or it is
currently lacking a compelling explanation for the suc-
cess of a well established branch of classical statistical
mechanics; namely the physics of colloids. Section IV will
introduce more formally the statistical mechanics of ideal
discrete and continuous mixtures to address the problem
of the entropy of mixing of two mixtures with different
compositions. In so doing, we will find that, in general,
the entropy of mixing is proportional to the square of a
norm in the space of probability distributions. Section V
will focus on the small-size system problem and propose
a resolution based on the connection between thermody-
namics and information. Finally, we will conclude and
discuss the relevance for the foundation of statistical me-
chanics and teaching of the subject.

II. IN DEFENCE OF GIBBS

A. On the misuse of Gibbs’ original canonical
ensemble

Stigler’s law of eponymy roughly states that no scien-
tific discovery is named after its original discoverer. This
section aims at determining whether this claim may hold
as well in the context of Gibbs’ paradox as it is recounted
in most textbooks i.e. has Gibbs anything to do with the
currently taught Gibbs’ paradox which did not find any
answer before the advent of quantum mechanics? Our
answer to this specific question will be negative and for
multiple reasons. To begin with, the statement of the
paradox relies on the premise that one can apply — and
that Gibbs applied carelessly — Eq. (1) in a context of
mixing where potentially two identical substances could
mix as well. Strangely enough, already in the Preface
of his seminal book [29] Gibbs explains that he would
not dare doing so. Instead he states that he dedicated
Chapter 15 to modifying the canonical results of the prior
chapters (including a priori Eq. (1) which appeared in
Ch. 4), to account for the possibility of multiple species
comprising identical particles:

Finally, in Chapter XV, we consider the mod-
ification of the preceding results which is nec-
essary when we consider systems composed of
a number of entirely similar particles of sev-
eral kinds, all of which kind being entirely

similar to each other, and when one of the
numbers of variations to be considered is that
of the numbers of the particles of the various
kinds which are contained in the system.

So we see unambiguously that, from the outset, Gibbs
separates the statistical mechanics of systems with a non-
varying amount of matter and that with protocols per-
mitting a variation of the amount of matter. There are
few reasons one can think of regarding why he would do
so. Firstly, he explains in the remainder of the preface
that he could have done differently but preferred sepa-
rating the

purely thermodynamic laws from those spe-
cial modifications which belong to the theory
of the properties of matter

This passage can refer at least to two things: a) that
the laws of thermodynamics were principally considered
as those derived by Clausius, in which case changes in the
amount of matter was not considered (see for example a
discussion by Jaynes of this interpretation [32]) or b) that
identifying the various kinds of matter comprising a sub-
stance requires chemical knowledge about the substance
and in principle incredibly many experiments to assert
with confidence that all the different species have been
identified, which seems to go beyond purely thermody-
namic considerations indeed.
Secondly, there is a reasonable technical reason why vary-
ing the number of particles should not necessarily be con-
sidered on the same footing as varying, say, the total
energy in the system or the accessible volume. In fact,
the mechanical foundation of thermodynamics sought out
by Gibbs relies on Hamiltonian dynamics and Liouville’s
theorem. On the one hand, varying the volume accessi-
ble to the particles or the total energy simply affect the
location and the size of the total phase space to be ex-
plored by the system while, on another hand, varying the
number of particles changes the dimension of phase space
and thus, should be treated with additional care.

So far, we have just shown that Gibbs was well aware of
the distinction and extra care one must take when consid-
ering systems with varying number of particles and that
he would not, a priori, carelessly apply Eq. (1) from his
Chap. 4 of Ref. [29] to tackle such a problem. However,
it could still be that the further modifications to be added
in Chap. 15 of Ref. [29] are still insufficient and amount
exactly to what we have derived in the introduction. We
wish to claim otherwise in what follows.

B. Gibbs’ concepts of Generic and Specific phases

Left with the doubts of the previous paragraph that
Gibbs’ Ch. 15 modifications to the canonical ensembles
could be of a different nature than the nowadays com-
monly accepted resolution, it turns out that we need to
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go no further than the second paragraph of Ch. 15 to see
that he is on the right track, for he asks:

If two phases differ only in that certain en-
tirely similar particles have changed places
with one another, are they to be regarded as
identical or different phases?

Here Gibbs queries whether microstates should a priori
be considered the same or different, from a statistical
perspective, when their corresponding phase-space points
differ only in that two identical particles have swapped
places. He then proposes that:

If the particles are regarded as indistinguish-
able, it seems in accordance with the spirit of
the statistical method to regard the phases as
identical.

We believe this reply by Gibbs to be important for
multiple reasons. First, retrospectively it hints to the
fact that the hyper-extensive behaviour of Eq. (4) arises
from overcounting states by considering as different those
states which only differ by the spatial permutation of
identical particles and, second, Gibbs makes explicit use
of the concept of indistinguishability of identical particles
and how this ought to have an impact on state counting
in a statistical reasoning. To the author, this is enough to
undermine — and even invalidate — the claim C2 in the
sense that, not only indistinguishability was known as a
concept of classical statistical mechanics, but it was also
used on a priori grounds to make sense of systems with
varying number of particles. By no means do we imply
that quantum indistinguishability, in the sense we think
of it today in term of bosons and fermions, was known
or even fathomed but the concept of indistinguishabil-
ity necessary to give a consistent statistical account of
systems with varying numbers of particles was, indeed,
already present.
Gibbs goes even further and introduces accordingly two
categories of microstates (phases in his text):

Our present purpose will often require us to
use terms phase, density in phase, statistical
equilibrium and other connected terms on the
supposition that the phases are not altered by
the exchange of places between similar parti-
cles... we shall call them ... generic phases.
But we shall be obliged to discuss phases ...
such that exchange of positions between simi-
lar particles is regarded as changing the phase
... which will be called ... specific phases.

That one may require to discuss specific phases in spite
of wanting to focus on generic phases is justified on tech-
nical grounds by Gibbs for ‘the analytical description of
a specific phase is more simple than that of a generic
phase’.
Here Gibbs’ intention appears pretty clear: he aims at
considering as relevant states what he calls generic phases

while conceding that for practical reasons he must also
use specific phases. Later in the chapter, Gibbs will de-
rive a general result which, applied to the case of a sin-
gle component system (and translating in our notations)
gives:

lnQgeneric(N,V, β) = lnQspecific(N,V, β)− lnN ! (8)

which is nothing but the logarithm of Eq.(5) since
Qspecific(N,V, β) is nothing but Q(N,V, β) of Eq. (1).

Finally, in the last page of his book, Gibbs does men-
tion the problem of mixing he is now famous for but
not so much as an unsolvable puzzle. Rather he wishes
to point out the absurdity that would have resulted had
one wanted to work with specific phases instead of generic
phases.

From this part we thus conclude that claim C2 —
that classical mechanics (comprising statistical mechan-
ics) was not equipped to address the problem of mixing
of identical substances — is hardly tenable in light of
Gibbs’ work as it is found in his seminal book [29]. One
may debate whether his treatment is satisfactory enough
but that is an entirely different matter.

C. Meaning of a zero entropy of mixing according
to Gibbs

In modern texts on statistical mechanics the author is
aware of, the concepts of generic and specific phases have
not survived. The closest to those would be the distinc-
tion between distinguishable and indistinguishable iden-
tical particles; that is particles that are identical but can
be distinguished (e.g because they are allegedly localised
in space) or cannot be distinguished, even in principle.
A notable difference between the modern concepts of dis-
tinguishable and indistinguishable on the one hand and
specific and generic on the other hand is that they do not
refer to the same thing. The former is a property of parti-
cles imagined individually while the latter is a property of
states as they are understood in a statistical description
of a substance. That point was already made, in a differ-
ent fashion, in his 1876 paper where he discusses the clas-
sical thermodynamics (no statistical mechanics involved
at all) of substances in great details [31]. First, among
many other things, he derives on purely thermodynamic
grounds that the entropy of a monoatomic substance, re-
cast in this paper’s notation, reads (cf. Eq. (278) in Ref.
[31]):

S = NkB ln
V

N
+

3

2
NkB lnT +NK (9)

where K is a constant. From Eq. (9), Gibbs retrieves
that for the mixing by diffusion of two different gases
the entropy change is kB ln 2 per particle while for simi-
lar gases it is zero. In passing, this indicates that claim
C1 — that classical thermodynamics would be in need
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of quantum correction — is in fact unsubstantiated for
at least Gibbs did not get any inconsistency from using
“ only ” 19th century thermodynamics to the theory of
the mixing of gases. Further, Gibbs reflects on what a
zero entropy variation means in the case of identical sub-
stances [31]:

when we say that two gas-masses of the same
kind are mixed under similar circumstances
there is no change of energy or entropy, we do
not mean that the gases that have been mixed
can be separated without change to external
bodies. On the contrary, the separation of the
gases is entirely impossible ... because we do
not recognise any difference in the substance
of the two masses.

This passage outlines what we have called above the epis-
temic view. It means that, as far as entropy and its varia-
tions are concerned, in a statistical sense, what matters is
whether the substances are the same or not and not nec-
essarily whether the particles comprising the substances
could be distinguished or not if one were to use, say, a
sufficiently good magnifying glass. This is emphasised
further in the fact that Gibbs refers to acting on ‘exter-
nal bodies’ to trigger separation; which bears similari-
ties with interpretations of thermodynamics as a control
theory [33]. If such an action results in changing an ex-

V/2, T, N2N1 , V/2, T, N2N1 ,

,2N1 2N2V, T, V, T, N, C

pC

1

pC

pC

11

V/2, T, N/2, C V/2, T, N/2, C

Figure 2. Mixing of two identical binary mixtures. Schematic
representation of the mixing of two identical binary mixtures.
Left panel: particle representation with 3 particles of type 1
and 4 particles of type 2 in each compartment. Right panel:
composition representation with molecular fraction of 3/7 for
type 1 and 4/7 for type 2. We note that the composition is un-
changed upon mixing illustrating the fact that two substance
can be identical while comprising multiple types of particles.

ternal potential influencing the particles comprising the
substances and if the two substances react in the same
way with regards to any such external influence (they are
identical in their ‘qualities’), then there is no way to sep-
arate them indeed and nor is there any way to tell apart

— via such means — the initial state from the final one.
The left panel of Fig. 2 illustrates this point by look-
ing at the mixing of two identical binary mixtures. Of
course, once the wall is removed there is no way to tell
apart the initial from the final state; giving rise then to
a zero entropy change.

D. Actual puzzles in Gibbs’ work

We have seen that Gibbs pondered carefully how Eq.
(1) should a priori be modified in cases with varying num-
bers of particles and that the mixing problem with the
anomaly resulting from using Eq. (1) was solely intro-
duced as a gedanken experiment at the end of his book
[29] to further convince the not-already-convinced reader
of his Ch. 15. This is not to say that Gibbs was not
puzzled by some aspects of the thermodynamics of sub-
stances. For example, in Ref. [29] he concedes that the
rules of statistical mechanics he has laid out are not able
to explain the isochoric molar specific heat capacity of
polyatomic ideal gases (e.g. 5/2R instead of 3R for di-
atomic gases). As far as the author is aware, the most
compelling explanation to this puzzle does come from
quantum mechanics whose quantization of energy levels
gives rise to a band gap between rotational and vibra-
tional degrees of freedom whereby the latter are usually
not thermally “ activated ” at room temperature.
Another curiosity, not explicitly presented as a puzzle per
se — but that Gibbs felt worth mentioning in his article
on heterogeneous substances — is the following property
of the mixing entropy [31]:

the fact is not less significant that the increase
of entropy due to the mixture of gases of dif-
ferent kinds ... is independent of the nature
of the gases ... and of the degree of similarity
between them.

In this passage, Gibbs points out that the mixing entropy
will amount to kB ln 2 per particle however minute the
difference between the substances may be and that it will
be zero only when the substances are exactly identical.

Fig. 3 illustrates this sudden drop in mixing entropy
as the “ measure of difference ” between two substances
is decreased down to zero. That there is such an indepen-
dence in the mixing entropy on the degree of similarity
between the mixed substances in spite of similarities in
their qualities is what some authors refer to as being the
actual Gibbs’ paradox [24, 25]. We note that this dis-
continuity in the entropy of mixing as a function of the
dissimilarity between substances is not affected at all by
the quantum indistinguishability approach to the prob-
lem of mixing, in fact as we will see in the next section
it is rather the opposite.

In this section we have shown that the claims C1 and
C2 often accompanying discussions of Gibbs’ paradox
and its standard resolution are not supported by the orig-
inal material available in Refs. [29, 31]. We also showed
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Figure 3. Another Gibbs’ paradox. Graph illustrating the
absence of dependence of the entropy of mixing in the nature
and similarity of the two mixed substances except when the
latter are exactly identical.

that Gibbs was not guilty of the logical mistake often
attributed to him — even by its defenders [32] — of ap-
plying an equation where it was not valid. He also did
not present the mixing of identical gases as a puzzle or a
paradox but merely as a paradigmatic example to justify
a posteriori some of his reflexions in the latest chapter of
Ref. [29]. Finally, we have seen that, as long as the mix-
ing entropy is concerned, Gibbs pointed out the strange
feature that its value is independent of the degree of sim-
ilarity between the substances. As far as the author is
aware, this “ curiosity ”, considered paradoxical by some,
has nevertheless failed to attract interest in the statisti-
cal mechanics community up to this day. We shall try to
discuss some interpretation of it in the fourth section.

III. LIMITS OF THE QUANTUM
INDISTINGUISHABILITY ARGUMENT

In the introduction we have briefly recalled that the
most popular explanation for the 1/N ! factor in Eq. (5)
was that it was a relic of the quantum indistinguishability
character of microscopic particles that can be classified
as either fermions or bosons. As a matter of fact, the
Symmetrisation postulate of quantum mechanics [34, 35]
enables one to construct a single relevant quantum state
from the linear combination of otherwise N ! different
multiparticle quantum states for identical particles. In
this respect, the factor 1/N ! appears naturally indeed
[28]. We also have briefly mentioned the epistemic ap-
proach in the introduction which we have delineated a bit
more in the previous section focusing on some of Gibbs’
writings. The point of this section is to discuss the claim
C3 that quantum indistinguishability is necessary to ra-
tionally account for the 1/N ! factor of Eq. (5) and thus,
ruling out any possibility of a classical rationale.

A. Narrowing down the epistemic view

If we consider one of the (identical) binary mixtures
of the left panel of Fig. 2 we see that it can be rep-
resented as a gas with fixed thermodynamic variables
(V/2, T,N1, N2) such that N1 + N2 = N/2 and with
N1 and N2 the numbers of particles of species 1 and
2 respectively. Now, there is an alternative equivalent
view to represent this thermodynamic state. One can
introduce the ratios p1 ≡ 2N1/N and p2 ≡ 2N2/N ,
such that p1 + p2 = 1 and characterise the composition
C of the substance by the pair of probabilities (p1, p2).
This enables us to express the state of the substance
in terms of its total amount of matter and composition:
(V/2, T,N1, N2) ≡ (V/2, T,N/2, C). If we have in mind
a mixing scenario a la Gibbs where densities and temper-
atures are kept fixed, then the identity of a substance to
be mixed is fully characterised by its composition. The
left panel of Fig. 2 can thus be reassessed as the mixing
between binary substances with the same composition as
depicted in the right panel of Fig. 2. Following Gibbs,
the entropy of mixing of two identical substances (thus
with same composition) is zero.
Let us now try to generalise these concepts a bit more.
Consider a discrete attribute X of the constituants of a
substance such that particles with different values of this
attribute can be separated (more on this in the last sec-
tion) by the external means at our disposal. A mixture
with composition C will be characterised by a probability
distribution of values of X, pC(X = x) = pC(x) (cf. left
panel of Fig. 5). Akin to the binary mixture scenario,
if one mixes two substances with the same composition,
as characterised by their probability distribution pC(x),
in otherwise identical conditions, then following Gibbs’
insight compels us to expect a zero mixing entropy for
any discrete mixture. In more general terms, the epis-
temic view posits that the thermodynamic potentials of
a mixture ought to be extensive if there is a well defined
composition C for the substance under consideration i.e.
the concept of varying the amount of matter of a sub-
stance, all other things being equal, is well defined as
long as there is a well defined notion of composition for
the said substance.

B. Compatibility between the quantum and
epistemic arguments

In the spirit of a re-reading of the Bohr-Einstein debate
by Jaynes [36], we wish to argue that the quantum in-
distinguishability and the epistemic arguments need not
be seen as either contradictory or even incompatible, for
they do not talk about the same things. Since the epis-
temic view focuses first and foremost on the actual possi-
bility of separating two substances via external means it
is not prescriptive on how should one comprehend the mi-
croscopic details with regards to the specific identities of
their constituants. Based on claim C4 and on the discus-
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Figure 4. N! rationales chart flow for discrete mixtures. Chart
flow representation of the two viewpoints often opposed to jus-
tify the use of 1/N ! in Eq. (5), namely the quantum indistin-
guishability viewpoint and the epistemic viewpoint. Propo-
sitions highlighted in green are “ True ” within the followed
viewpoint and are propagated to further elements, if there are
any. “ Truth ” propagation is represented by a green line in
the diagram. Likewise, propositions highlighted in red are “
False ” within the followed viewpoint and do not propagate to
further elements. We notice that in the case of discrete mix-
tures both viewpoints consider as “ True ” the proposition
that one must divide Eq. (1) by N !.

sion of the previous paragraph, Fig. 4 gives a “ chart flow
” representation of how these two different arguments can
be graphically viewed in their simplest versions. We see
that the reasonings associated with each argument do not
cross each other (and thus do not conflict) except possi-
bly at the conclusion that one should divide Eq. (1) by
N !. For single component and discrete mixture systems,
Fig. 4 claims that the quantum and epistemic viewpoints
are perfectly compatible with each other.
Incompatibility may arise, however, when an exclusivity
claim is made, making then Fig. 4 invalid. For example
the often made stronger claim C3 that the quantum ra-
tionale is the only viable justification on which to ground
classical statistical mechanics seems to rely on a prede-
fined notion of rationality which either imposes quantum
mechanics from the outset or posits — via claims C1
or C2 — the inadequacy of classical mechanics (includ-
ing statistical mechanics) to address the issue at hand.
Based on the previous section, we argue that C1 and C2
are incorrect — or at least strongly arguable — assump-
tions to begin with and since we do not see on which
ground should quantum mechanics be imposed as more
rational than classical statistical arguments we will keep
the view depicted by Fig. 4 which supports compatibil-
ity of the the quantum and epistemic arguments at the
expense of undermining the exclusivity claim of C3. We
will see in what follows that C3 may have more problems
than its exclusivity claim being challenged.

C. Pushing the quantum and epistemic view to
their limits

We now consider a mixture whose composition is char-
acterised by an attribute X of the constituants that takes
on real values.

V, T, N, C

pC
1

x

pC
1

x

pC
1

x

V, T, N, C

⇢C

x

⇢C

x

⇢C

x

V/2, T, N/2, C V/2, T, N/2, C V/2, T, N/2, C V/2, T, N/2, C

Figure 5. Composition representation. Schematic representa-
tion of the characterisation of a composition by the probabil-
ity distribution of an attribute X of its constituents modelled
as a random variable. Left panel: discrete mixture with a dis-
crete probability distribution. Right panel: continuous mix-
ture with a continuous probability distribution. Both panels
illustrate that upon mixing two mixtures with the same com-
position, all other things being equal, the composition of the
final mixture is unchanged.

Extending the considerations of the previous para-
graphs to the continuous case, the composition of such a
polydisperse system will then be represented by a proba-
bility density ρC(x) as illustrated in the right panel of Fig.
5. The question is then to determine what happens to the
entropy if one is to mix two polydisperse substances char-
acterised by the same probability density ρC(x). Here we
make the “ leap of faith ” that, even in this case, if the
substances are identical in composition, then there is no
way to separate them — via any external means acting
on the substances without altering their composition —
and the mixing entropy should be zero; thus entailing
that a factor 1/N ! of some sort must be used in Eq. (1)
to compensate the otherwise super-extensive growth of
the phase space volume. On the contrary, the quantum
indistinguishability argument reaches a different conclu-
sion. As a matter of fact, continuous mixtures have the
property that no two particles have exactly the same at-
tribute value x, even in the thermodynamic limit [37], so
they cannot be indistinguishable in the quantum sense.

Thus, following claim C4, the quantum indistinguisha-
bility argument can justify neither the extensivity of a
continuous mixture nor the technical use of a 1/N ! cor-
rection factor in the partition function. The situation
for polydisperse substances is then summarised in Fig.
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divide by  
N!

Quantum  
Indistinguishability

Are some 
 particles 
identical?

Epistemic  
rationale

non-extensive try harder 

yes
Composition 

well 
defined?

yes

no no

VS

1/N !

Figure 6. N! rationales chart flow for continuous mixtures
Chart flow representation of the two viewpoints often opposed
to justify the use of 1/N ! in Eq. (5), namely the quantum
indistinguishability viewpoint and the epistemic viewpoint.
Propositions highlighted in green are “ True ” within the fol-
lowed viewpoint and are propagated to further elements, if
there are any. “ Truth ” propagation is represented by a
green line in the diagram. Likewise, propositions highlighted
in red are “ False ” within the followed viewpoint and do not
propagate to further elements. We notice that the quantum
and epistemic viewpoints disagree on the “ Truth ” character
of the proposition that one must divide Eq. (1) by N !.

6 where we see that the quantum and epistemic views
reach opposite conclusions with regards to the extensiv-
ity of the thermodynamic potentials of such substances.
Of course, the next question is to know which view is
supported by evidence.
To answer this question we shall appeal to the statisti-
cal mechanics of colloids which has been a very success-
ful branch of statistical mechanics for about a century,
predicting and verifying for example the existence of en-
tropy driven ordering in systems with hard core repulsion
[38, 39]. Colloidal particles are mesoscopic objects whose
state of motion is sensitive to thermal fluctuations and
the thermodynamics of simple colloidal substances ap-
pears well understood within the framework of a classical
statistical mechanics derived from Eq. (5). Yet colloidal
particles are polydisperse in many of their features e.g.
mass and size to name two obvious such features. As a
result, the success of a statistical mechanics of colloids
based on Eq. (5) appears as a challenge to the quan-
tum indistinguishability viewpoint. On the contrary, re-
cent studies have pointed out that the foundations of the
physics of polydisperse systems in general and colloids in
particular was unproblematic if one adopts the epistemic
viewpoint [40–42]. Finally, a recent experimental study
on colloids further supports the epistemic view as under-
pinning the success of classical statistical mechanics at
the expense of the quantum view [43]. We believe this is
enough evidence to either reject or strongly undermine

claim C3, in that, as it currently stands, the quantum
argument on which it relies cannot explain the success
of the physics of colloids and would need to be amended
to do so. Note that even if an amended version of the
quantum argument were to made, it would probably not
undermine the epistemic view and we would be back to a
peaceful coexistence between the quantum and epistemic
arguments as depicted in Fig. 4.

In this section we have reduced the epistemic view to
knowing whether two substances were characterised by
the same composition probability distributions. We have
argued that the quantum indistinguishability and epis-
temic arguments were perfectly compatible for discrete
mixtures. They only seem to disagree if an exclusivity
claim is made from either side (like claim C3 in favour
of the quantum argument) or in the case of polydisperse
systems. Since C3 is the current dominant view, we have
emphasised that its exclusivity claim for discrete mix-
tures is unwarranted and that, even when presupposing
quantum mechanics as more rational, C3 should either
be rejected or seriously amended based on the success of
the statistical mechanics of colloids.

IV. A POSSIBLE ANSWER TO THE “ REAL ”
GIBBS’ PARADOX

In section II we have pointed out the curiosity that the
entropy of mixing of two different substances was inde-
pendent of how close in their ‘qualities’ they appeared
to be (cf. Fig. 3). In this section we wish to interpret
the mixing of two substances, in otherwise equal circum-
stances, in the broadest possible sense i.e. as being the
mixing of two a priori polydisperse substances 1 and 2
with respective compositions C1 and C2 (cf. Fig. 7).

Like Gibbs’ discussion in Ref. [31], we shall focus on
the change in entropy due to the mixing by diffusion of
two polydisperse (ideal) gases. To derive it we shall first
look at the entropy of an ideal discrete mixture — for
which the quantum and epistemic views agree — which
we will use as a basis to derive a more general result for
continuous mixtures.

A. Entropy of an ideal discrete mixture

For ideal gases, Eq. (5) can readily be generalised to
discrete mixtures comprising n different species each with
Ni identical particles of mass mi:

Qgeneric(N,V, T, C) =

n∏
i=1

1

Ni!

(
V

(ξ/
√

2πmikBT )3

)Ni

(10)
where we have kept Gibbs’ terminology of generic phase
to specify how states are to be interpreted in this equa-
tion. In the thermodynamic limit, the corresponding en-
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V/2, T, N/2, C1 V/2, T, N/2, C2
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�Smix
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Figure 7. Mixing of two polydisperse gases. Composition rep-
resentation of the mixing of two continuous mixtures 1 and 2
of composition C1 and C2 respectively. At this stage, one may
want to determine the entropy of mixing of such substances
as well as the final composition. This may shed some light on
the initial paradox of similarity independence of the entropy
of mixing pointed out by Gibbs in Ref. [31].

tropy reads in the :

Sgeneric(N,V, T, C) ' NkB
(

lnV +
3

2
lnT + K̃

)
+kB

n∑
i=1

Ni lnm
3/2
i

−kB
n∑
i=1

(Ni lnNi −Ni) (11)

Where K̃ is a constant. Eq. (11) contains explicitly the
total number of particles in the substance N but also the
number of particle of each species Ni. In line with the
discussion of section III, we shall recast it solely in term of
N and the composition C. To this end, we introduce the
probability distribution pC(i) such that a) Ni ≡ NpC(i)
and b) the now defined composition ensures that varying
the system size can be done in well controlled manner.
Eq. (11) reads then:

Sgeneric(N,V, T, C) ' NkB
(

ln
V

N
+

3

2
lnT + K̃ + 1

)
+kBN〈lnm3/2

i 〉C
+Ns(C) (12)

where 〈lnm3/2
i 〉C ≡

∑n
i=1 pC(i) lnm

3/2
i and where we

have introduced the composition entropy [44]:

s(C) ≡ −kB
n∑
i=1

pC(i) ln pC(i) (13)

Note that Eq. (13) is often referred to as the mixing
entropy. However, to avoid ambiguous terminology we

refrain from referring to it in this way, for we consider
that a mixing entropy ought to be the variation of en-
tropy of a system as two or multiple substances initially
separated have mixed by diffusion.
Eq. (12) is insightful in many regards. First it sepa-
rates contributions to the generic entropy owing to com-
position from those related to the substance as a whole.
Second, related to the first remark, it appears that as
long as the composition is kept fixed the terms on the
second and third lines of Eq. (12) are constant too

and can be absorbed in K̃ such that one may define

K = kB(K̃ + 1 + 〈lnm3/2
i 〉C) + s(C) such that, at fixed

composition, Eq. (12) reduces to Eq. (9) obtained by
Gibbs in Ref. [31]. So, provided its composition remains
unchanged, the thermodynamic behaviour of a mixture
of ideal gases is equivalent to that of a single component
ideal gas. With regards to the discussion on the 1/N ! fac-
tor in Eq. (5), this implies that its justification need not
rely on an exact identity relation amongst the particles
comprising the system. It seems that it is enough [44]
that the composition be well defined, as the epistemic
view suggests in Fig. 4 for example. That a mixture can
be conceptualised as a single component system is not
really surprising. After all, one of the first practice ques-
tions a first year undergraduate student might be asked
in a thermodynamics course would be to determine the
number of moles of air given volume, temperature and
pressure conditions; as if air was a single species. Of
course, this was already emphasised by Gibbs in his 1876
paper, for example p. 214 [31]:

[Eq. (9)] applies to all gases of constant com-
position for which the matter is entirely de-
termined by a single variable [N].

We shall now try to see how this translates for continuous
mixtures.

B. Entropy of an ideal continuous mixture

Continuous mixtures are characterised by an attribute
X of the particles that is a continuous random variable.
As such, the corresponding probabilities suffer from the
same difficulties as those of continuous probability theory
and must be “ fixed ” in the same way:

• The probability to have a particle with X = x is
exactly zero.

• One must lump a range of values together in an
interval [x, x+ ∆x] so as to define:

pC(X ∈ [x, x+ ∆x]) = ρ∆
C (x)∆x (14)

where ∆x can be interpreted as setting the “ grain-
ing ” of the domain of integration of X and ρ∆

C is
the corresponding coarse grained probability den-
sity [45].
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• One may define an effective species, associated to
the equivalence class z ∼ y iff (z ∈ [x, x+ ∆x] and
y ∈ [x, x+ ∆x]), with population number:

N∆
x ≡ Nρ∆

C (x)∆x (15)

inducing an effective discrete composition C∆ for a
covering set of finite ∆x.

From Eq. (15), the same reasoning as that of the pre-
vious section can be carried out to give an entropy
Sgeneric(N,V, T, C

∆). One may then define [41] the en-
tropy of the system as being the limit [46]:

Sgeneric(N,V, T, C) = lim
∆x→0

S(N,V, T, C∆) (16)

which gives:

Sgeneric(N,V T, C) ' NkB
(

ln
V

N
+

3

2
lnT + K̃ + 1

)
+kBN〈lnm(x)3/2〉C
+NsΛ(C) (17)

where 〈lnm(x)3/2〉C ≡
∫
dx ρC(x) lnm(x)3/2 and where

we have introduced the continuous composition entropy:

sΛ(C) ≡ −kB
∫
dx ρC(x) ln(Λ(x)ρC(x)) (18)

which is nothing but the continuous Shannon entropy as-
sociated to the probability density ρC(x) where Λ(x) is a
function appearing when taking the limit of ∆x towards
zero.
Two remarks are now in order.
First, as before, at fixed composition (and graining func-
tion) Eq. (18) can reduce to Eq. (9) provided one in-

troduces K = kB(K̃ + 1 + 〈lnm(x)3/2〉C) + sΛ(C). This
means that, provided the conclusions we may draw from
the mathematical treatment we have presented are to be
trusted, even a polydisperse gas can be interpreted as a
single component gas which, when extrapolated to the
more general Eq. (5) supports the idea that an exact
detailed knowledge of the identity of the particles is un-
necessary to justify the factor 1/N !. It seems sufficient to
know that the composition is kept constant to justify this
factor regardless of what that composition may be. Since
such a knowledge is a prerequisite to talk about a sub-
stance at all (one may not know how to talk about a sub-
stance whose composition changes all the time) this fur-
ther brings a mathematical foundation to the epistemic
view from the more well defined statistical mechanics of
discrete mixtures.
Second, the use of the continuous Shannon entropy sΛ(C)
in Eq. (17) is not without technical and conceptual is-
sues. As a matter of fact, contrary to the standard Shan-
non entropy, it is easy to see that the continuous Shannon
entropy is not positive definite and its form is not invari-
ant under a change of variable. Furthermore, it is not
clear what should the function Λ(x) be a piori and how

it should be interpreted. This is sometimes referred to
as the measure problem [47]. In spite of these issues, we
have just seen in the previous paragraph that, as long
as the composition is fixed, the value of sΛ(C) is incon-
sequential for the thermodynamics of the system as it
can be absorbed into a constant term in the ideal part
of the entropy (and as a corollary that of the chemical
potential too) of the substance. So, issues may not arise
for the thermodynamic properties of substances at fixed
composition. However, in a mixing scenario the compo-
sition does change and it is worth seeing what is the role
played by the composition entropies.

In the last two parts we have derived conclusions based
on Eq. (5) which corroborate a general remark made
by Gibbs that Eq. (6) applies to all gases of constant
composition for which in actuality the matter is entirely
determined by the single variable N .

C. Mixing between two polydisperse gases

We now consider the mixing of two polydisperse gases 1
and 2 both with a polydispersity in the property X of the
particles. The gases are initially separated and with the
same pressure and temperature. The initial state of the
system has the entropy Si = Sgeneric(N/2, V/2, T, C1) +
Sgeneric(N/2, V/2, T, C2). In order to apply Eq. (17) to
the final state once the gases are mixed, we need to de-
termine the new composition C3 of the mixture resulting
from the diffusion of gases 1 and 2 in all the accessi-
ble volume. In absence of chemical reaction, conserva-
tion of the number of particles in each species x gives
ρC3(x) = (ρC1(x) + ρC2(x))/2. The entropy of the final
state then reads Sf = Sgeneric(N,V, T, C3). The mixing
entropy ∆Smix ≡ Sf −Si is found to depend solely on N
and the composition entropies and takes on a very simple
form [44]:

∆Smix =
N

2
(2sΛ(C3)− sΛ(C1)− sΛ(C2))

= NkBDJS(C1||C2) (19)

Where DJS(C1||C2) is the Jensen-Shannon (JS) diver-
gence defined by:

DJS(C1||C2) ≡ 1

2

∫
dx

(
ρC1 ln

2ρC1
ρC1 + ρC2

+ ρC2 ln
2ρC2

ρC1 + ρC2

)
(20)

At this stage, multiple comments are in order:

• In spite of the dependence of the composition en-
tropies sΛ(C1), sΛ(C2) and sΛ(C3) in the graining
function Λ(x), the final result for the mixing en-
tropy in Eq. (19) is independent of it.

• The JS divergence expressed in Eq. (20) has a form
invariant under a change of variable. This is easily
seen since the argument of the logarithm is the ratio
between two probability densities, so the Jacobians
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corresponding to a change of variable would cancel
out.

• The JS divergence is positive definite, symmetric
under the exchange of the probability densities and
its square root satisfies the triangular inequality; it
is the square of a norm in probability space [48].

• As the square of a norm it has the unusual feature
of being bounded from above by ln 2.

It is now possible to interpret Eq. (19): the entropy of
mixing per particle between any two substances is equal
(up to a factor kB) to the square distance between the
probability densities characterising the substances’ com-
position and it saturates at the value ln 2 when the sub-
stances are very dissimilar, thus retrieving Eq. (4). Fur-
thermore, Eq. (19) supports Gibbs’ original insight dis-
cussed in section II that when mixing two substances
what matters is whether the substances (and not the
particles comprising the substances) are identical or not.
However, the picture emerging from eq. (19) adds to
Gibbs’ account in that the mixing entropy is now quanti-
tatively expressible in term of a distance squared between
the substances.

0 5 �12 = |µ1�µ2|
�

ln 2

�Smix

NkB ⇢C1 = N (µ1,�)

⇢C2 = N (µ2,�)

Figure 8. A solution to the “ real ” Gibbs’ paradox. Plot of the
dimensionless mixing entropy per particle as a function of the
dissimilarity δ12 between two polydisperse substances with
compositions C1 and C2 both normally distributed with the
same standard deviation but with different means µ1 and µ2

respectively. Contrary to Fig. 3 illustrating an expected sharp
drop from ln 2 to zero as two substances become strictly iden-
tical, we observe here that ∆Smix/NkB goes continuously to
zero as the substances become more and more similar i.e. as
the overlap between their probability distributions increases.

In particular, the mixing entropy has plenty of room
to assume any value between zero and ln 2 as the sub-
stances become more and more similar. In Fig. 8 we
illustrate this point by looking at two compositions C1
and C2 characterised by the densities ρC1 = N (µ1, σ)
and ρC2 = N (µ2, σ) respectively and where N (µ, σ) is

a normal distribution of mean µ and standard deviation
σ. Since the two distributions have the same standard
deviation, the quantity δ12 = |µ1 − µ2|/σ can serve as
an intuitive measure of the distance between C1 and C2
with the advantage that it goes to infinity thus corre-
sponding to a situation analogous to the schematic plot
of Fig. 3. From Fig. 8 we see that for large values of
δ12 and for δ12 = 0 the quantity ∆Smix/NkB agrees with
Gibbs. However, the value of ∆Smix/NkB obtained from
Eq. (19) varies continuously to zero as δ12 is approaching
zero too, thus removing the “ curiosity ” pointed out by
Gibbs in his 1876 paper. As a side comment, we note that
DJS(C1||C2) also informs on how two probability densi-
ties can be told apart and that is when the value of the
JS divergence gets very close to ln 2. In the particular
case of Fig. 8 we see that it happens when |µ1 − µ2| is
around the now quite popular 5σ value.

In this section, we have derived statistical mechanics
results based on a straightforward generalisation of Eq.
(5) to discrete mixtures. We have shown that, as long
as the composition is kept constant, an ideal gas mixture
— be it discrete or continuous — will be equivalent to
a single component ideal gas, as pointed out by Gibbs
in his work on heterogeneous substances [31]. Extrapo-
lated to non-ideal substances this result means that the
combinatorial term of any mixture can be replaced by a
1/N ! for all practical purposes, as long as the composi-
tion is unchanged. Of course, interacting systems may
undergo phase transitions in composition in which case
the composition-dependent term played by the compo-
sition entropy will play a crucial role [44, 49]. Another
case whereby composition is expected to change is upon
the mixing of two mixtures. We have shown that in the
most general case the mixing entropy was proportional
to a squared distance in the space of probability distribu-
tions. Finally, upon interpreting the mixing of substances
a la Gibbs as the mixing of two polydisperse systems, we
find that the strange fact that the mixing entropy did
not seem to depend on the degree of similarity between
the substances — the “ real ” Gibbs’ paradox — read-
ily disappears and instead varies continuously for ln 2 to
zero as the degree of dissimilarity goes to zero.

V. SMALL SYSTEMS AND LINK WITH THE
LANDAUER BOUND

A possible objection that can be raised against the
epistemic approach presented so far is that it appears to
rely on the assumption that each realisation of a compo-
sition will be a faithful representation of the underlying
distribution it is sampled from. Although this assump-
tion might hold true in the thermodynamic limit [49], for
finite size systems the actual composition may be quite
different from the underlying distribution; thus impact-
ing the entropy of mixing. For example, one may argue
that upon considering the mixing of two polydisperse sys-
tems with one particle each, surely in many occasions the
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entropy of mixing will be different from zero even if the
polydispersities are the same! In fact, it is not clear that
it should be so. In the spirit of Gibbs’ insight from Ref.
[31], it would indeed depend on the external means be-
ing used to separate the substances back to their original
state. If these means are the same for very small samples
and large ones, then some similarities between the two
mixing entropies may be observed. This section is aimed
at investigating these similarities and differences between
very very small and large systems, as it were, provided
the external means being used to separate the substances
are assumed to be the same; otherwise we may comparing
apples and oranges.

A. Demixing of a single particle system

As far as equilibrium states are concerned, the entropy
change upon mixing two substances is equal to the oppo-
site of the entropy change upon demixing them. Because
the protocol that may be used to separate the substances
back to their original state plays an important role in
the epistemic view, we shall here look at the demixing
entropy of a single particle system. One may — rightly
— wonder how is demixing envisioned at all when only
a single particle is involved. We argue that this extreme
system does make sense in the context of an infinite num-
ber of trials.
To see this we consider a separation protocol P (e.g.
dragging a filter across the system or turning on an exter-
nal field) which has the following random outcomes when
applied on any particle with feature X and sampled from
composition C3 (given by ρC3(x) = (ρC1 + ρC2)/2):

ρ(x|left) = ρC1 (21)

ρ(x|right) = ρC2 (22)

where ρ(x|left) and ρ(x|right) are the conditional prob-
ability densities for finding a particle with feature X ∈
[x, x+ dx] knowing that it is on the left and right of the
box respectively. Now, the composition — as charac-
terised by a probability density — associated to the left
hand side or the right hand side of the box becomes a
feature of the separation protocol. Again, this is a formal
way to express Gibbs’ emphasis on the external means
used to separate two substances discussed in section II.
Now, considering a particle with attribute X ∈ [x, x+dx]
freely moving in a box, the rate of success for the sepa-
ration protocol to bring it, say, to the left hand side of
the box [50] reads:

r(x) =
ρC1

ρC1 + ρC2
(23)

Of course, it follows from Eq. (23) that the rate of failure
for bringing the particle to the left hand side of the box,
or equivalently the rate of success for bringing it to the
right hand side, is 1− r(x).

Now that we have shown how one could envision the
demixing of system with composition C3 into two com-
positions C1 and C∈ by consider solely single particle sys-
tems, we shall see in the next section how one may relate
it to an apparently very different system, namely the 1-
bit of memory.

B. Link with a 1-bit memory system

A 1-bit memory system is a system which can assume
two well-defined states. Although it does not necessar-
ily strike one as obvious, a system comprising a single
particle in a box is actually one of those systems that
can easily be mapped onto a 1-bit memory system. It is
known since at least Szilar’s recasting of Maxwell’s de-
mon problem but, instead of making heat flow from cold
to hot without doing work, is meant to extract work from
a gas at equilibrium by acquiring information about the
position of its constituents [51]. The strategy to perform

|0i |1i

Figure 9. Mapping a 1-particle system onto a 1-bit memory
system. Schematic representation on how a single particle in
a box can be mapped onto a 1-bit memory state depending
on where it is located with respect to a virtual dividing sur-
face splitting the box in two equal parts. The bit memory
states are denoted |0〉 and |1〉 depending on whether the par-
ticle in the left hand side of the box or the right hand side
respectively.

the mapping is illustrated in Fig. 9 and amounts to split-
ting the box in two equal parts and define the equivalence
class of states where the particle is on the left hand side
of the box as the memory state |0〉 and define the equiv-
alence class of states where the particle is on the right
hand side of the box as the memory state |1〉.

We shall now try to see how this mapping can be of
any use in trying to estimate the mixing entropy for such
a system.
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C. Making use of Landauer’s principle

In 1961 R. Landauer proposed a connection between
thermodynamics and computation by positing that re-
setting a 1-bit memory from a thermal state could not
be done without dissipating heat and thus without any
associated increase of entropy [52]. More specifically he
postulated that the minimum amount of energy to be
dissipated to reset one bit to state |0〉 for example, was:

Ediss = kBT ln 2 (24)

so as to balance at least the entropy change associated
to the state of the bit. Although it can be verified in a
wide variety of models in statistical mechanics and can
appear to some as somewhat tautological or trivial, Lan-
dauer’s principle remains a principle in that its statement
is independent of the specific physical model being used
to emulate a 1-bit memory system [53]. A recent experi-
ment testing of Landauer’s principle has reported that, in
practice, Landauer’s principle could be violated by hav-
ing 1-bit memory systems being reseted by dissipating
less than kBT ln 2 on average [54]. They noted, however,
that the violation is only apparent, for the resetting pro-
tocol onto a dedicated memory state is not always suc-
cessful in their experiments. In this view, given a rate of
success r for one of the outcomes of the resetting opera-
tion they proposed a generalised Landauer bound which
reads:

Ediss;r = kBT ln 2 + kBT (r ln r+ (1− r) ln(1− r)) (25)

where the first term in the right hand side of Eq. (25)
is nothing but the standard Landauer bound of eq. (24)
and the second (negative) term is proportional to minus
the Shannon entropy of the resetting protocol onto a tar-
get memory state. It follows that if the protocol is fully
certain to succeed i.e. r = 1 or r = 0, then one retrieves
Landauer’s principle while if it is maximally uncertain to
succeed i.e. r = 1/2, then there is no information differ-
ence between the initial state of the bit and the final one
and the dissipated energy is zero.
One way to interpret Eq. (25) is to realise that as soon
as the resetting onto a specific state of the memory bit
(say state |0〉) is not certain then the bit can be reseted
by either finishing in state |0〉 or in state |1〉; in either
case the prior state of the memory has been lost. So for
each instance of a resetting operation one has:

• End state is |0〉 and Ediss(|0〉) = kBT ln 2 +
kBT ln r, where kBT ln r can be interpreted as the
dissipated energy being saved by compromising on
the degree of certainty of the outcome [19].

• End state is |1〉 and Ediss(|1〉) = kBT ln 2 +
kBT ln(1− r), where kBT ln(1− r) can likewise be
interpreted as the dissipated energy being saved by
compromising on the degree of certainty of the out-
come [19].

Overall, the expectation of the energy dissipated by the
resetting protocol is rEdiss(|0〉) + (1− r)Ediss(|1〉) which
gives Eq. (25).

Since we have mapped our demixing problem onto a
memory resetting problem, we can determine the energy
dissipated by applying the separation protocol P to a
single equilibrated particle in a box with attribute X ∈
[x, x + dx] by applying Eq. (25) and replacing r with
r(x).
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Ediss;r(x)
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hEdiss;r(x)

kBT iC3

Figure 10. Dissipated energy conditioned on particle type.
Plot of the dissipated energy surface as a function particle
type and a measure of how dissimilar are the compositions C1
and C2. The semi-transparent surface above the energy sur-
face represents the distribution ρC3 which is used to compute
the weighted average of Ediss;r(x)/kBT over the values of x
to get the curve of 〈Ediss;r(x)〉x/kBT coinciding with that of
∆Smix/NkB in Fig. 7.

In Fig. 10 we plot the dimensionless energy to be dissi-
pated by the protocol P, Ediss;r(x)/kBT as a function of x
and δ12 = |µ1−µ2|/σ for the distributions ρC1 = N (µ1, σ)
and ρC2 = N (µ2, σ) as in section III. For a given value of
δ12, we see that the dissipated energy depends on the par-
ticle type x and is often different from the JS divergence.
In particular, there is always a value x∗, at which ρC1
and ρC2 intersect, for which the energy dissipated is zero.
Likewise, there is a large set of values of x in the tails of
the distributions giving rise to Ediss;r(x)/kBT = ln 2 cor-
responding to the expectation that small systems must
somehow be more certain to be separated. This intu-
ition is certainly correct but limited by the resolution of
the separation protocol P precisely given by δ12. One
may argue that, in this case, the resolution can always
be sharpened to increase certainty but, we believe, that
would be missing the point because the protocol P is
precisely expected to reconstruct compositions C1 and C2
if we repeat the separation experiment sufficiently many
times on particles sampled from a parent composition C3.
Were we to use a sharper protocol to discriminate more
accurately two values of x, this reconstruction criterion
— which is the whole point of the present discussion —
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would not be met. In fact, the average work per particle
to reconstruct the compositions C1 and C2 on either side
of the box (from sampling individual particles from C3
and apply P) corresponds to a weighted average over the
variable x of Ediss;r(x) with weight ρC3 giving then [44]:

〈Ediss;r(x)〉C3 = kBTDJS(C1||C2) (26)

whose corresponding curve as a function of δ12

is illustrated (in red) as projected onto the plane
(Ediss;r(x)/kBT, δ12) in Fig. 10. We notice that, pro-
vided ∆Smix/N is interpreted as 〈Ediss;r(x)〉C3/T , it is
identical to the solution of the “ real ” Gibbs’ paradox
we have proposed at the end of section IV in Fig. 8.

In this section we have looked at systems made of a
single particle in a box and defined a demixing protocol
to address the small system size objection. By using a
mapping between the demixing protocol and the reset-
ting of a 1-bit memory we have made use of a generalised
Landauer’s principle applicable to cases where the reset-
ting protocol on one target memory state is not always
successful. Using this generalised principle, we have de-
rived that indeed depending on the specific identity the
various particle types x may contribute very differently
to the energy to be dissipated to reconstruct composi-
tions C1 and C2 on either side of the box. This can be a
first step to address the possibility of mixing experiments
in the case where the starting sample is an unlikely real-
isation of the parent composition. However, in a context
where both the sampling from a parent composition and
the separation protocol are repeated greatly many times,
then the inferred energy to be dissipated per particle is
directly proportional to the JS divergence as found in
section IV.

VI. CONCLUSION AND DISCUSSION

In this paper, we have challenged the standard narra-
tive of Gibbs’ paradox which is claimed to undermine a
classical foundation to classical statistical mechanics and
require a quantum foundation instead.
In section II we showed that the puzzle commonly re-
ferred to as Gibbs’ paradox did not originate from Gibbs’
writing [29, 31] since he did not reach the theoretical
inconsistency discussed in section I. Instead we found
that already then he proposed essentially the same jus-
tification for the use of Eq. (5) as is done nowadays in
most textbooks [1–20]; the twist being that he uses classi-
cal rationales for that; namely classical indistinguishabil-
ity of particles and statistical reasoning both articulated
around what we called the epistemic viewpoint. This
has lead us to conclude that the claims C1 and C2, that
classical physics was unequipped to derive valid conclu-
sions on the mixing of identical substances, were neither
theoretically nor historically accurate in light of the the
evidence found in Refs. [29, 31].
In section III we argued that the epistemic and quantum

viewpoints on the Gibbs’ paradox were not a priori to
be opposed to one another since they do not refer to the
same thing. By relating the epistemic view point to iden-
tification of a substance to its probability distribution
with regards to a specific attribute, we advocated for a
peaceful compatibility between the two views for discrete
mixtures in general and single component systems more
specifically. In these cases, the claim C3 of the neces-
sity of quantum indistinguishability to justify the factor
N ! can only be valid if either C1 and C2 are true, which
we rejected in section II, or if quantum mechanical-based
arguments are given superiority for rationality from the
outset; which then probably needs to be justified on other
grounds (e.g.methodological or metaphysical). Pushing
the quantum and epistemic views to their limits in the
case of continuous mixtures we showed that they reach
contradictory conclusions on the extensivity of such sys-
tems, thus undermining one of the views. We suggested
that the conclusion of the epistemic view was fully con-
sistent with the success of the physics of colloids while,
on the contrary, the quantum indistinguishability was
not. We concluded that either C3 is false or the quantum
mechanics-based argument on which it relies needs to be
seriously modified to accommodate this new constraint.
Even in that case however we stressed that there would
not be any reason to consider the quantum view ratio-
nally superior to the epistemic view.
To support this conclusion we set out to determine the
entropy of mixing of polydisperse gases in section IV.
Starting from Eq. (5), where both the quantum and epis-
temic views agree, we extended the statistical mechanics
formalism to continuous mixtures from the mathematics
of the probability distributions characterising their com-
position. For both discrete and continuous mixtures the
entropy was fully extensive and was that of a single com-
ponent gas up to an additional term depending solely on
the composition, the composition entropy. This lead us
to conclude that any ideal gas with constant composition
— be it discrete or continuous — had not only an exten-
sive entropy but could also be considered as a single-
component gas. We noted that this constant composi-
tion condition could be violated via spontaneous phase
transition in composition in interacting systems or more
generally by mixing processes. We addressed the latter
problem by noticing that the change in entropy upon
mixing two gases in equal circumstances only depended
on the composition entropies of the gases being mixed;
ending-up with an expression which can be interpreted as
the square of a metric in the space of probability distribu-
tions. We have shown that, when applied to the mixing of
two normally distributed polydisperse systems, this gen-
eralised entropy of mixing did go continuously to zero as
the similarity between the substances is increased. This
result holds in principle for any mixing process between
substances characterised by continuous distributions and
resolves, in this sense, a curiosity pointed out by Gibbs
in Ref. [31]. At least two questions are still remaining:
what about finite size systems and what does the contin-



15

uous probability distribution may mean? In section V,
we addressed these two issues by focusing on the idea of
separation protocol i.e. the external means one is willing
to use to separate two substances from a mixed state.
We argued that one way to interpret the epistemic view
was to relate the probability distributions not so much
to single realisations of a composition but rather to the
protocol enabling a distinction between two substances in
the first place. Thus, considering a protocol that could
separate a composition C3 into two compositions C1 and
C2 we determined the energy to be dissipated by the said
protocol given it was acting on a known species. This was
done by making use of a mapping between the demixing
of a substance into two substances and the uncertain re-
set of a 1-bit memory from a thermal state. This explicit
analogy with information erasure further strengthens the
idea of the entropy of mixing being successfully accounted
for by the epistemic viewpoint.

This work has mainly focused on Gibbs’ work and a
slight extension of his views — as understood by the au-
thor — to the statistical mechanics of ideal mixtures.
With regards to claim C2 however, it is worth noting
that one important premise for it to hold is that there
exists a single undebatable view about how classical con-
cepts of classical mechanics should look like and be ap-
plied in a statistical context. Nonetheless, the point has
been raised however that it was not the case and that
at least two concepts of mechanical states could be con-
ceived in mechanics, one owing to Newton and the other
to Laplace [55, 56]. We do not wish to pursue this aspect
of the discussion further here but, if anything, it only
adds to the case against C2 we have put forward in sec-
tion II.
Further research and clarification on the notion of indis-
tinguishability might be required. For instance, although
a traditional understanding of indistinguishability still
makes sense in the context of discrete mixtures, it seems
impossible to apply it as is in the case of continuous mix-

tures. One might instead rely on a less particle-based
notion but rather on an ensemble-based notion. Thus, in
the case of section V, particles may be said to belong to
the same equivalence class provided they end-up on the
same side of the box under the action of the separation
protocol; they become “ indistinguishable ” in this very
specific sense. One may argue that statistical mechan-
ics should not be influenced by such external considera-
tions but it is not so clear to the author. The very exis-
tence of Gibbs’ ensembles illustrates the fact that knowl-
edge about the external constrains on the system does
influence the a priori probabilities one gives to the mi-
crostates. Why should the knowledge about whether the
substance under study has a well defined composition or
not be treated differently than, say, knowing that the vol-
ume or pressure is fixed?
In our summary of section II above, we have omitted
purposely the fact that Gibbs did mention the mixing of
identical gases and did point out that if one were to use
Eq. (1) he would get an inconsistency with basic thermo-
dynamics. There, Gibbs does not seem to refer to this
example as a puzzle at all but rather as a reductio ad
absurdum argument illustrating the rationality of using
generic phases over specific phases.

In the end, we have argued that Gibbs’ paradox does
not constitute a problem for the classical foundation of
classical statistical mechanics as they were essentially laid
out by Gibbs in his work [29] — and by his predecessors
— when quantum mechanics did not exist. The epistemic
viewpoint of entropy and that of identity at the substance
level (rather than at the particle level) fully account for
both the rationality of Eq. (5) and the success of the
statistical mechanics of colloids. On the contrary, when
continuous mixtures are considered, the “ Gibbs para-
dox ” could refer to the current inconsistency between
the quantum indistinguishability argument for classical
extensivity and the success of a classical statistical me-
chanics based on Eq. (5) to apprehend the physics of —
polydisperse — colloids.
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