90 research outputs found

    In Drosophila melanogaster the COM Locus Directs the Somatic Silencing of Two Retrotransposons through both Piwi-Dependent and -Independent Pathways

    Get PDF
    BACKGROUND: In the Drosophila germ line, repeat-associated small interfering RNAs (rasiRNAs) ensure genomic stability by silencing endogenous transposable elements. This RNA silencing involves small RNAs of 26-30 nucleotides that are mainly produced from the antisense strand and function through the Piwi protein. Piwi belongs to the subclass of the Argonaute family of RNA interference effector proteins, which are expressed in the germline and in surrounding somatic tissues of the reproductive apparatus. In addition to this germ-line expression, Piwi has also been implicated in diverse functions in somatic cells. PRINCIPAL FINDINGS: Here, we show that two LTR retrotransposons from Drosophila melanogaster, ZAM and Idefix, are silenced by an RNA silencing pathway that has characteristics of the rasiRNA pathway and that specifically recognizes and destroys the sense-strand RNAs of the retrotransposons. This silencing depends on Piwi in the follicle cells surrounding the oocyte. Interestingly, this silencing is active in all the somatic tissues examined from embryos to adult flies. In these somatic cells, while the silencing still involves the strict recognition of sense-strand transcripts, it displays the marked difference of being independent of the Piwi protein. Finally, we present evidence that in all the tissues examined, the repression is controlled by the heterochromatic COM locus. CONCLUSION: Our data shed further light on the silencing mechanism that acts to target Drosophila LTR retrotransposons in somatic cells throughout fly development. They demonstrate that different RNA silencing pathways are involved in ovarian versus other somatic tissues, since Piwi is necessary for silencing in the former tissues but is dispensable in the latter. They further demonstrate that these pathways are controlled by the heterochromatic COM locus which ensures the overall protection of Drosophila against the detrimental effects of random retrotransposon mobilization

    Motor expertise modulates the unconscious processing of human body postures

    Get PDF
    Little is known about the cognitive background of unconscious visuomotor control of complex sports movements. Therefore, we investigated the extent to which novices and skilled high-jump athletes are able to identify visually presented body postures of the high jump unconsciously. We also asked whether or not the manner of processing differs (qualitatively or quantitatively) between these groups as a function of their motor expertise. A priming experiment with not consciously perceivable stimuli was designed to determine whether subliminal priming of movement phases (same vs. different movement phases) or temporal order (i.e. natural vs. reversed movement order) affects target processing. Participants had to decide which phase of the high jump (approach vs. flight phase) a target photograph was taken from. We found a main effect of temporal order for skilled athletes, that is, faster reaction times for prime-target pairs that reflected the natural movement order as opposed to the reversed movement order. This result indicates that temporal-order information pertaining to the domain of expertise plays a critical role in athletes’ perceptual capacities. For novices, data analyses revealed an interaction between temporal order and movement phases. That is, only the reversed movement order of flight-approach pictures increased processing time. Taken together, the results suggest that the structure of cognitive movement representation modulates unconscious processing of movement pictures and points to a functional role of motor representations in visual perception

    Both piRNA and siRNA Pathways Are Silencing Transcripts of the Suffix Element in the Drosophila melanogaster Germline and Somatic Cells

    Get PDF
    In the Drosophila melanogaster germline, the piRNA pathway silences retrotransposons as well as other transcribed repetitive elements. Suffix is an unusual short retroelement that was identified both as an actively transcribed repetitive element and also as an element at the 3′ ends of the Drosophila non-LTR F element. The copies of suffix that are F element-independent are far more actively transcribed than their counterparts on the F element. We studied the patterns of small RNAs targeting both strands of suffix in Drosophila ovaries using an RNase protection assay and the analysis of the corresponding RNA sequences from the libraries of total small RNAs. Our results indicate that suffix sense and antisense transcripts are targeted mainly by 23–29 nucleotides in length piRNAs and also by 21 nucleotides in length siRNAs. Suffix sense transcripts actively form longer RNA species, corresponding either to partial digestion products of the RNAi and Piwi pathways or to another RNA silencing mechanism. Both sense and antisense suffix transcripts accumulated in the ovaries of homozygous spn-E, piwi and aub mutants. These results provide evidence that suffix sense and antisense transcripts in the germ line and soma are targeted by both RNAi and Piwi pathways and that a Dicer-independent pathway of biogenesis of siRNAs could exist in Drosophila cells

    Sensory Processing of Motor Inaccuracy Depends on Previously Performed Movement and on Subsequent Motor Corrections: A Study of the Saccadic System

    Get PDF
    When goal-directed movements are inaccurate, two responses are generated by the brain: a fast motor correction toward the target and an adaptive motor recalibration developing progressively across subsequent trials. For the saccadic system, there is a clear dissociation between the fast motor correction (corrective saccade production) and the adaptive motor recalibration (primary saccade modification). Error signals used to trigger corrective saccades and to induce adaptation are based on post-saccadic visual feedback. The goal of this study was to determine if similar or different error signals are involved in saccadic adaptation and in corrective saccade generation. Saccadic accuracy was experimentally altered by systematically displacing the visual target during motor execution. Post-saccadic error signals were studied by manipulating visual information in two ways. First, the duration of the displaced target after primary saccade termination was set at 15, 50, 100 or 800 ms in different adaptation sessions. Second, in some sessions, the displaced target was followed by a visual mask that interfered with visual processing. Because they rely on different mechanisms, the adaptation of reactive saccades and the adaptation of voluntary saccades were both evaluated. We found that saccadic adaptation and corrective saccade production were both affected by the manipulations of post-saccadic visual information, but in different ways. This first finding suggests that different types of error signal processing are involved in the induction of these two motor corrections. Interestingly, voluntary saccades required a longer duration of post-saccadic target presentation to reach the same amount of adaptation as reactive saccades. Finally, the visual mask interfered with the production of corrective saccades only during the voluntary saccades adaptation task. These last observations suggest that post-saccadic perception depends on the previously performed action and that the differences between saccade categories of motor correction and adaptation occur at an early level of visual processing

    Fix Your Eyes in the Space You Could Reach: Neurons in the Macaque Medial Parietal Cortex Prefer Gaze Positions in Peripersonal Space

    Get PDF
    Interacting in the peripersonal space requires coordinated arm and eye movements to visual targets in depth. In primates, the medial posterior parietal cortex (PPC) represents a crucial node in the process of visual-to-motor signal transformations. The medial PPC area V6A is a key region engaged in the control of these processes because it jointly processes visual information, eye position and arm movement related signals. However, to date, there is no evidence in the medial PPC of spatial encoding in three dimensions. Here, using single neuron recordings in behaving macaques, we studied the neural signals related to binocular eye position in a task that required the monkeys to perform saccades and fixate targets at different locations in peripersonal and extrapersonal space. A significant proportion of neurons were modulated by both gaze direction and depth, i.e., by the location of the foveated target in 3D space. The population activity of these neurons displayed a strong preference for peripersonal space in a time interval around the saccade that preceded fixation and during fixation as well. This preference for targets within reaching distance during both target capturing and fixation suggests that binocular eye position signals are implemented functionally in V6A to support its role in reaching and grasping

    Disruption of Saccadic Adaptation with Repetitive Transcranial Magnetic Stimulation of the Posterior Cerebellum in Humans

    Get PDF
    Saccadic eye movements are driven by motor commands that are continuously modified so that errors created by eye muscle fatigue, injury, or—in humans—wearing spectacles can be corrected. It is possible to rapidly adapt saccades in the laboratory by introducing a discrepancy between the intended and actual saccadic target. Neurophysiological and lesion studies in the non-human primate as well as neuroimaging and patient studies in humans have demonstrated that the oculomotor vermis (lobules VI and VII of the posterior cerebellum) is critical for saccadic adaptation. We studied the effect of transiently disrupting the function of posterior cerebellum with repetitive transcranial magnetic stimulation (rTMS) on the ability of healthy human subjects to adapt saccadic eye movements. rTMS significantly impaired the adaptation of the amplitude of saccades, without modulating saccadic amplitude or variability in baseline conditions. Moreover, increasing the intensity of rTMS produced a larger impairment in the ability to adapt saccadic size. These results provide direct evidence for the role of the posterior cerebellum in man and further evidence that TMS can modulate cerebellar function

    Two eyes in action

    Get PDF
    Do relative binocular disparities guide our movements in depth? In order to find out we asked subjects to move a 'cursor' to a target within a simulated horizontal plane at eye height. They did so by moving a computer mouse. We determined how quickly subjects responded to the target jumping in depth. We found that it took subjects about 200 ms to respond to changes in binocular disparity. Subjects responded just as quickly if the cursor was temporarily only visible to one eye near the time that the target jumped in depth, and less vigorously, though just as quickly, if the cursor jumped rather than the target, so the fastest binocular responses cannot be based directly on the relative retinal disparity between the target and the cursor. Subjects reacted faster to changes in the target's height in the visual field than to changes in binocular disparity, but did not react faster to changes in image size. These results suggest that binocular vision mainly improves people's everyday movements by giving them a better sense of the distances of relevant objects, rather than by relative retinal disparities being used to directly guide the movement. We propose that relative disparities only guide parts of very slow movements that require extreme precision. © Springer-Verlag 2005

    Orienting gaze shifts during muscimol inactivation of caudal fastigial nucleus in the cat. II. Dynamics and eye-head coupling.

    No full text
    International audienceWe have shown in the companion paper that muscimol injection in the caudal part of the fastigial nucleus (cFN) consistently leads to dysmetria of visually triggered gaze shifts that depends on movement direction. Based on the observations of a constant error and misdirected movements toward the inactivated side, we have proposed that the cFN contributes to the specification of the goal of the impending ipsiversive gaze shift. To test this hypothesis and also to better define the nature of the hypometria that affects contraversive gaze shifts, we report in this paper on various aspects of movement dynamics and of eye/head coordination patterns. Unilateral muscimol injection in cFN leads to a slight modification in the dynamics of both ipsiversive and contraversive gaze shifts (average velocity decrease = 55 degrees/s). This slowing in gaze displacements results from changes in both eye and head. In some experiments, a larger gaze velocity decrease is observed for ipsiversive gaze shifts as compared with contraversive ones, and this change is restricted to the deceleration phase. For two particular experiments testing the effect of visual feedback, we have observed a dramatic decrease in the velocity of ipsiversive gaze shifts after the animal had received visual information about its inaccurate gaze responses; but virtually no change in hypermetria was noted. These observations suggest that there is no obvious causal relationship between changes in dynamics and in accuracy of gaze shifts after muscimol injection in the cFN. Eye and head both contribute to the dysmetria of gaze. Indeed, muscimol injection leads to parallel changes in amplitude of both ocular and cephalic components. As a global result, the relative contribution of eye and head to the amplitude of ipsiversive gaze shifts remains statistically indistinguishable from that of control responses, and a small (1.6 degrees) increase in the head contribution to contraversive gaze shifts is found. The delay between eye and head movement onsets is increased by 7.3 +/- 7.4 ms for contraversive and decreased by 8.3 +/- 10.1 ms for ipsiversive gaze shifts, corresponding respectively to an increased or decreased lead time of head movement initiation. The modest changes in gaze dynamics, the absence of a link between eventual dynamics changes and dysmetria, and a similar pattern of eye-head coordination to that of control responses, altogether are compatible with the hypothesis that the hypermetria of ipsiversive gaze shifts results from an impaired specification of the metrics of the impending gaze shift. Regarding contraversive gaze shifts, the weak changes in head contribution do not seem to reflect a pathological coordination between eye and head but would rather result from the tonic deviations of gaze and head toward the inactivated side. Hence, our data suggest that the hypometria of contraversive gaze shifts also might result largely from an alteration of processes that specify the goal rather than the on-going trajectory, of saccadic gaze shifts
    corecore