74 research outputs found

    Remodeling of the m6A RNA landscape in the conversion of acute lymphoblastic leukemia cells to macrophages

    Get PDF
    We thank CERCA Programme/Generalitat de Catalunya for institutional support. This work was supported by the Health Department PERIS-project no. SLT/002/16/00374 and AGAUR-projects no. 2017SGR1080 of the Catalan Government (Generalitat de Catalunya); Ministerio de Ciencia e InnovaciĂłn (MCI), Agencia Estatal de InvestigaciĂłn (AEI) and European Regional Development Fund (ERDF) project no. RTI2018-094049-B-I00; the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant agreement No. 743168); the Varda and Boaz Dotan Research Center in Hemato-oncology affiliated to the Tel Aviv University; the Cellex Foundation; and “la Caixa” Banking Foundation (LCF/PR/GN18/51140001). ME is an ICREA Research Professor.Peer Reviewed"Article signat per 12 autors/es: Alberto Bueno-Costa, David Piñeyro, Carlos A. GarcĂ­a-Prieto, Vanessa Ortiz-Barahona, Laura Martinez-Verbo, Natalie A. Webster, Byron Andrews, Nitzan Kol, Chen Avrahami, Sharon Moshitch-Moshkovitz, Gideon Rechavi & Manel Esteller"Postprint (published version

    Cooperativity of stress-responsive transcription factors in core hypoxia-inducible factor binding regions

    Get PDF
    The transcriptional response driven by Hypoxia-inducible factor (HIF) is central to the adaptation to oxygen restriction. Despite recent characterization of genome-wide HIF DNA binding locations and hypoxia-regulated transcripts in different cell types, the molecular bases of HIF target selection remain unresolved. Herein, we combined multi-level experimental data and computational predictions to identify sequence motifs that may contribute to HIF target selectivity. We obtained a core set of bona fide HIF binding regions by integrating multiple HIF1 DNA binding and hypoxia expression profiling datasets. This core set exhibits evolutionarily conserved binding regions and is enriched in functional responses to hypoxia. Computational prediction of enriched transcription factor binding sites identified sequence motifs corresponding to several stress-responsive transcription factors, such as activator protein 1 (AP1), cAMP response element-binding (CREB), or CCAAT-enhancer binding protein (CEBP). Experimental validations on HIF-regulated promoters suggest a functional role of the identified motifs in modulating HIF-mediated transcription. Accordingly, transcriptional targets of these factors are over-represented in a sorted list of hypoxia-regulated genes. Altogether, our results implicate cooperativity among stress-responsive transcription factors in fine-tuning the HIF transcriptional responseThis work was supported by Ministerio de Ciencia e InnovaciĂłn (Spanish Ministry of Science and Innovation, MICINN) [grant number SAF2008-03147 to L. del P.], Comunidad AutĂłnoma de Madrid [grant number S-SAL-0311_2006 to L. del P.] and the 7th Research Framework Programme of the European Union [grant number METOXIA project ref. HEALTH-F2-2009-222741] to L. del P. D.V. was a recipient of PhD funding from the Spanish Ministry of Science and Innovation [FPU programme] and the European Molecular Biology Organization [Short-Term Fellowships

    Flow Diverter Treatment for Non-Ruptured Carotid Aneurysms: Efficacy and Safety

    Get PDF
    Purpose Internal carotid artery (ICA) aneurysm treatment with a flow diverter (FD) has shown an adequate efficacy and safety profile, presenting high complete occlusion or near occlusion rates with low complications during follow-up. The purpose of this study was to evaluate the efficacy and safety of FD treatment in non-ruptured internal carotid aneurysms. Materials and Methods This is a retrospective, single-center, observational study evaluating patients diagnosed with unruptured ICA aneurysms treated with an FD between January 1, 2014, and January 1, 2020. We analyzed an anonymized database. The primary effectiveness endpoint was complete occlusion (O’Kelly–Marotta D, OKM-D) of the target aneurysm through 1-year follow-up. The safety endpoint was the evaluation of modified Rankin Scale (mRS) 90 days after treatment, considering a favorable outcome an mRS 0-2. Results A total of 106 patients were treated with an FD, 91.5% were women; the mean follow- up was 427.2±144.8 days. Technical success was achieved in 105 cases (99.1%). All patients included had 1-year follow-up digital subtraction angiography control; 78 patients (73.6%) completed the primary efficacy endpoint by achieving total occlusion (OKM-D). Giant aneurysms had a higher risk of not achieving complete occlusion (risk ratio, 3.07; 95% confidence interval, 1.70 - 5.54]). The safety endpoint of mRS 0-2 at 90 days was accomplished in 103 patients (97.2%). Conclusion Treatment of unruptured ICA aneurysms with an FD showed high 1-year total occlusion results, with very low morbidity and mortality complications

    Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program

    Get PDF
    Altres ajuts: This work was supported by the Obra Social "La Caixa" (to M. Esteller).Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease

    HIF1α drives chemokine factor pro-tumoral signaling pathways in acute myeloid leukemia

    Get PDF
    Approximately 80% of patients diagnosed with acute myeloid leukemia (AML) die as a consequence of failure to eradicate the tumor from the bone marrow microenvironment. We have recently shown that stroma-derived interleukin-8 (IL-8) promotes AML growth and survival in the bone marrow in response to AML-derived macrophage migration inhibitory factor (MIF). In the present study we show that high constitutive expression of MIF in AML blasts in the bone marrow is hypoxia-driven and, through knockdown of MIF, HIF1α and HIF2α, establish that hypoxia supports AML tumor proliferation through HIF1α signaling. In vivo targeting of leukemic cell HIF1α inhibits AML proliferation in the tumor microenvironment through transcriptional regulation of MIF, but inhibition of HIF2α had no measurable effect on AML blast survival. Functionally, targeted inhibition of MIF in vivo improves survival in models of AML. Here we present a mechanism linking HIF1α to a pro-tumoral chemokine factor signaling pathway and in doing so, we establish a potential strategy to target AML

    Hypoxia Negatively Regulates Antimetastatic PEDF in Melanoma Cells by a Hypoxia Inducible Factor-Independent, Autophagy Dependent Mechanism

    Get PDF
    Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor (SERPIN) superfamily, displays a potent antiangiogenic and antimetastatic activity in a broad range of tumor types. Melanocytes and low aggressive melanoma cells secrete high levels of PEDF, while its expression is lost in highly aggressive melanomas. PEDF efficiently abrogates a number of functional properties critical for the acquisition of metastatic ability by melanoma cells, such as neovascularization, proliferation, migration, invasiveness and extravasation. In this study, we identify hypoxia as a relevant negative regulator of PEDF in melanocytes and low aggressive melanoma cells. PEDF was regulated at the protein level. Importantly, although downregulation of PEDF was induced by inhibition of 2-oxoglutarate-dependent dioxygenases, it was independent of the hypoxia inducible factor (HIF), a key mediator of the adaptation to hypoxia. Decreased PEDF protein was not mediated by inhibition of translation through untranslated regions (UTRs) in melanoma cells. Degradation by metalloproteinases, implicated on PEDF degradation in retinal pigment epithelial cells, or by the proteasome, was also excluded as regulatory mechanism in melanoma cells. Instead, we found that degradation by autophagy was critical for PEDF downregulation under hypoxia in human melanoma cells. Our findings show that hypoxic conditions encountered during primary melanoma growth downregulate antiangiogenic and antimetastasic PEDF by a posttranslational mechanism involving degradation by autophagy and could therefore contribute to the acquisition of highly metastatic potential characteristic of aggressive melanoma cells

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: a systematic review and modelling study

    Get PDF
    Background: Seasonal influenza virus is a common cause of acute lower respiratory infection (ALRI) in young children. In 2008, we estimated that 20 million influenza-virus-associated ALRI and 1 million influenza-virus-associated severe ALRI occurred in children under 5 years globally. Despite this substantial burden, only a few low-income and middle-income countries have adopted routine influenza vaccination policies for children and, where present, these have achieved only low or unknown levels of vaccine uptake. Moreover, the influenza burden might have changed due to the emergence and circulation of influenza A/H1N1pdm09. We aimed to incorporate new data to update estimates of the global number of cases, hospital admissions, and mortality from influenza-virus-associated respiratory infections in children under 5 years in 2018. Methods: We estimated the regional and global burden of influenza-associated respiratory infections in children under 5 years from a systematic review of 100 studies published between Jan 1, 1995, and Dec 31, 2018, and a further 57 high-quality unpublished studies. We adapted the Newcastle-Ottawa Scale to assess the risk of bias. We estimated incidence and hospitalisation rates of influenza-virus-associated respiratory infections by severity, case ascertainment, region, and age. We estimated in-hospital deaths from influenza virus ALRI by combining hospital admissions and in-hospital case-fatality ratios of influenza virus ALRI. We estimated the upper bound of influenza virus-associated ALRI deaths based on the number of in-hospital deaths, US paediatric influenza-associated death data, and population-based childhood all-cause pneumonia mortality data in six sites in low-income and lower-middle-income countries. Findings: In 2018, among children under 5 years globally, there were an estimated 109·5 million influenza virus episodes (uncertainty range [UR] 63·1–190·6), 10·1 million influenza-virus-associated ALRI cases (6·8–15·1); 870 000 influenza-virus-associated ALRI hospital admissions (543 000–1 415 000), 15 300 in-hospital deaths (5800–43 800), and up to 34 800 (13 200–97 200) overall influenza-virus-associated ALRI deaths. Influenza virus accounted for 7% of ALRI cases, 5% of ALRI hospital admissions, and 4% of ALRI deaths in children under 5 years. About 23% of the hospital admissions and 36% of the in-hospital deaths were in infants under 6 months. About 82% of the in-hospital deaths occurred in low-income and lower-middle-income countries. Interpretation: A large proportion of the influenza-associated burden occurs among young infants and in low-income and lower middle-income countries. Our findings provide new and important evidence for maternal and paediatric influenza immunisation, and should inform future immunisation policy particularly in low-income and middle-income countries. Funding: WHO; Bill & Melinda Gates Foundation.Fil: Wang, Xin. University of Edinburgh; Reino UnidoFil: Li, You. University of Edinburgh; Reino UnidoFil: O'Brien, Katherine L.. University Johns Hopkins; Estados UnidosFil: Madhi, Shabir A.. University of the Witwatersrand; SudĂĄfricaFil: Widdowson, Marc Alain. Centers for Disease Control and Prevention; Estados UnidosFil: Byass, Peter. Umea University; SueciaFil: Omer, Saad B.. Yale School Of Public Health; Estados UnidosFil: Abbas, Qalab. Aga Khan University; PakistĂĄnFil: Ali, Asad. Aga Khan University; PakistĂĄnFil: Amu, Alberta. Dodowa Health Research Centre; GhanaFil: Azziz-Baumgartner, Eduardo. Centers for Disease Control and Prevention; Estados UnidosFil: Bassat, Quique. University Of Barcelona; EspañaFil: Abdullah Brooks, W.. University Johns Hopkins; Estados UnidosFil: Chaves, Sandra S.. Centers for Disease Control and Prevention; Estados UnidosFil: Chung, Alexandria. University of Edinburgh; Reino UnidoFil: Cohen, Cheryl. National Institute For Communicable Diseases; SudĂĄfricaFil: EchavarrĂ­a, Marcela Silvia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones MĂ©dicas e Investigaciones ClĂ­nicas "Norberto Quirno". CEMIC-CONICET; ArgentinaFil: Fasce, Rodrigo A.. Public Health Institute; ChileFil: Gentile, Angela. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo GutiĂ©rrez"; ArgentinaFil: Gordon, Aubree. University of Michigan; Estados UnidosFil: Groome, Michelle. University of the Witwatersrand; SudĂĄfricaFil: Heikkinen, Terho. University Of Turku; FinlandiaFil: Hirve, Siddhivinayak. Kem Hospital Research Centre; IndiaFil: Jara, Jorge H.. Universidad del Valle de Guatemala; GuatemalaFil: Katz, Mark A.. Clalit Research Institute; IsraelFil: Khuri Bulos, Najwa. University Of Jordan School Of Medicine; JordaniaFil: Krishnan, Anand. All India Institute Of Medical Sciences; IndiaFil: de Leon, Oscar. Universidad del Valle de Guatemala; GuatemalaFil: Lucero, Marilla G.. Research Institute For Tropical Medicine; FilipinasFil: McCracken, John P.. Universidad del Valle de Guatemala; GuatemalaFil: Mira-Iglesias, Ainara. FundaciĂłn Para El Fomento de la InvestigaciĂłn Sanitaria; EspañaFil: MoĂŻsi, Jennifer C.. Agence de MĂ©decine PrĂ©ventive; FranciaFil: Munywoki, Patrick K.. No especifĂ­ca;Fil: OurohirĂ©, Millogo. No especifĂ­ca;Fil: Polack, Fernando Pedro. FundaciĂłn para la InvestigaciĂłn en InfectologĂ­a Infantil; ArgentinaFil: Rahi, Manveer. University of Edinburgh; Reino UnidoFil: Rasmussen, Zeba A.. National Institutes Of Health; Estados UnidosFil: Rath, Barbara A.. Vienna Vaccine Safety Initiative; AlemaniaFil: Saha, Samir K.. Child Health Research Foundation; BangladeshFil: SimĂ”es, Eric A.F.. University of Colorado; Estados UnidosFil: Sotomayor, Viviana. Ministerio de Salud de Santiago de Chile; ChileFil: Thamthitiwat, Somsak. Thailand Ministry Of Public Health; TailandiaFil: Treurnicht, Florette K.. University of the Witwatersrand; SudĂĄfricaFil: Wamukoya, Marylene. African Population & Health Research Center; KeniaFil: Lay-Myint, Yoshida. Nagasaki University; JapĂłnFil: Zar, Heather J.. University of Cape Town; SudĂĄfricaFil: Campbell, Harry. University of Edinburgh; Reino UnidoFil: Nair, Harish. University of Edinburgh; Reino Unid

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Enteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: a meta-analysis.

    Get PDF
    Latin America and Caribbean (LAC) is a developing region characterized for its importance for global food security, producing 23 and 11% of the global beef and milk production, respectively. The region?s ruminant livestock sector however, is under scrutiny on environmental grounds due to its large contribution to enteric methane (CH4) emissions and influence on global climate change. Thus, the identification of effective CH4 mitigation strategies which do not compromise animal performance is urgently needed, especially in context of the Sustainable Development Goals (SDG) defined in the Paris Agreement of the United Nations. Therefore, the objectives of the current study were to: 1) collate a database of individual sheep, beef and dairy cattle records from enteric CH4 emission studies conducted in the LAC region, and 2) perform a meta-analysis to identify feasible enteric CH4 mitigation strategies, which do not compromise animal performance. After outlier?s removal, 2745 animal records (65% of the original data) from 103 studies were retained (from 2011 to 2021) in the LAC database. Potential mitigation strategies were classified into three main categories (i.e., animal breeding, dietary, and rumen manipulation) and up to three subcategories, totaling 34 evaluated strategies. A random effects model weighted by inverse variance was used (Comprehensive Meta-Analysis V3.3.070). Six strategies decreased at least one enteric CH4 metric and simultaneously increased milk yield (MY; dairy cattle) or average daily gain (ADG; beef cattle and sheep). The breed composition F1 Holstein × Gyr decreased CH4 emission per MY (CH4IMilk) while increasing MY by 99%. Adequate strategies of grazing management under continuous and rotational stocking decreased CH4 emission per ADG (CH4IGain) by 22 and 35%, while increasing ADG by 22 and 71%, respectively. Increased dietary protein concentration, and increased concentrate level through cottonseed meal inclusion, decreased CH4IMilk and CH4IGain by 10 and 20% and increased MY and ADG by 12 and 31%, respectively. Lastly, increased feeding level decreased CH4IGain by 37%, while increasing ADG by 171%. The identified effective mitigation strategies can be adopted by livestock producers according to their specific needs and aid LAC countries in achieving SDG as defined in the Paris Agreement
    • 

    corecore