44 research outputs found

    Comparative evaluation of methods for estimating retinal ganglion cell loss in retinal sections and wholemounts

    Get PDF
    To investigate the reliability of different methods of quantifying retinal ganglion cells (RGCs) in rat retinal sections and wholemounts from eyes with either intact optic nerves or those axotomised after optic nerve crush (ONC). Adult rats received a unilateral ONC and after 21 days the numbers of Brn3a+ , bIII-tubulin+ and Islet-1+ RGCs were quantified in either retinal radial sections or wholemounts in which FluoroGold (FG) was injected 48 h before harvesting. Phenotypic antibody markers were used to distinguish RGCs from astrocytes, macrophages/microglia and amacrine cells. In wholemounted retinae, counts of FG+ and Brn3a+ RGCs were of similar magnitude in eyes with intact optic nerves and were similarly reduced after ONC. Larger differences in RGC number were detected between intact and ONC groups when images were taken closer to the optic nerve head. In radial sections, Brn3a did not stain astrocytes, macrophages/microglia or amacrine cells, whereas βIII-tubulin and Islet-1 did localize to amacrine cells as well as RGCs. The numbers of βIII-tubulin+ RGCs was greater than Brn3a+ RGCs, both in retinae from eyes with intact optic nerves and eyes 21 days after ONC. Islet-1 staining also overestimated the number of RGCs compared to Brn3a, but only after ONC. Estimates of RGC loss were similar in Brn3astained radial retinal sections compared to both Brn3a-stained wholemounts and retinal wholemounts in which RGCs were backfilled with FG, with sections having the added advantage of reducing experimental animal usage

    Characterization in vitro and in vivo of a pandemic H1N1 influenza virus from a fatal case

    Get PDF
    Pandemic 2009 H1N1 (pH1N1) influenza viruses caused mild symptoms in most infected patients. However, a greater rate of severe disease was observed in healthy young adults and children without co-morbid conditions. Here we tested whether influenza strains displaying differential virulence could be present among circulating pH1N1 viruses. The biological properties and the genotype of viruses isolated from a patient showing mild disease (M) or from a fatal case (F), both without known co-morbid conditions were compared in vitro and in vivo. The F virus presented faster growth kinetics and stronger induction of cytokines than M virus in human alveolar lung epithelial cells. In the murine model in vivo, the F virus showed a stronger morbidity and mortality than M virus. Remarkably, a higher proportion of mice presenting infectious virus in the hearts, was found in F virus-infected animals. Altogether, the data indicate that strains of pH1N1 virus with enhanced pathogenicity circulated during the 2009 pandemic. In addition, examination of chemokine receptor 5 (CCR5) genotype, recently reported as involved in severe influenza virus disease, revealed that the F virus-infected patient was homozygous for the deleted form of CCR5 receptor (CCR5Δ32).Funding Statement: This work was supported by Instituto de Salud Carlos III (Programa especial de investigación sobre la gripe pándemica GR09/0023, GR09/0040, GR09/0039) and Ciber de Enfermedades Respiratorias. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.S

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    Material Exchange in Photoreceptor Transplantation: Updating Our Understanding of Donor/Host Communication and the Future of Cell Engraftment Science

    No full text
    Considerable research effort has been invested into the transplantation of mammalian photoreceptors into healthy and degenerating mouse eyes. Several platforms of rod and cone fluorescent reporting have been central to refining the isolation, purification and transplantation of photoreceptors. The tracking of engrafted cells, including identifying the position, morphology and degree of donor cell integration post-transplant is highly dependent on the use of fluorescent protein reporters. Improvements in imaging and analysis of transplant recipients have revealed that donor cell fluorescent reporters can transfer into host tissue though a process termed material exchange (ME). This recent discovery has chaperoned a new era of interpretation when reviewing the field’s use of dissociated donor cell preparations, and has prompted scientists to re-examine how we use and interpret the information derived from fluorescence-based tracking tools. In this review, we describe the status of our understanding of ME in photoreceptor transplantation. In addition, we discuss the impact of this discovery on several aspects of historical rod and cone transplantation data, and provide insight into future standards and approaches to advance the field of cell engraftment

    Analysis of genetic variability and mapping of point mutations in influenza virus by the RNase A mismatch cleavage method.

    Get PDF
    We have applied the RNase A mismatch cleavage method to analyze genetic variability in RNA viruses by using influenza virus as a model system. Uniformly labeled RNA probes synthesized from a cloned hemagglutinin gene of a given viral strain were hybridized to RNA isolated from other strains of characterized or uncharacterized genetic composition. The RNA.RNA heteroduplexes containing a variable number of base mismatches were digested with RNase A, and the resistant products were analyzed by denaturing polyacrylamide gel electrophoresis. We show that many of these single base mismatches are cleaved by RNase A, generating unique and characteristic patterns of resistant RNA fragments specific for each of the different viral strains. Comparative analysis of the cleavage patterns allows a qualitative estimation of the genetic relatedness and evolution of field strains. We also show that cleavage by RNase A at single base mismatches can readily detect and localize point mutations present in monoclonal antibody-resistant variants. This method should have wide applications in the study of RNA viruses, not only for epidemiological analysis but also in some diagnostic problems, such as characterization of phenotypic mutants
    corecore