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Abstract

Pandemic 2009 H1N1 (pH1N1) influenza viruses caused mild symptoms in most infected patients. However, a greater rate of
severe disease was observed in healthy young adults and children without co-morbid conditions. Here we tested whether
influenza strains displaying differential virulence could be present among circulating pH1N1 viruses. The biological
properties and the genotype of viruses isolated from a patient showing mild disease (M) or from a fatal case (F), both
without known co-morbid conditions were compared in vitro and in vivo. The F virus presented faster growth kinetics and
stronger induction of cytokines than M virus in human alveolar lung epithelial cells. In the murine model in vivo, the F virus
showed a stronger morbidity and mortality than M virus. Remarkably, a higher proportion of mice presenting infectious
virus in the hearts, was found in F virus-infected animals. Altogether, the data indicate that strains of pH1N1 virus with
enhanced pathogenicity circulated during the 2009 pandemic. In addition, examination of chemokine receptor 5 (CCR5)
genotype, recently reported as involved in severe influenza virus disease, revealed that the F virus-infected patient was
homozygous for the deleted form of CCR5 receptor (CCR5D32).
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Introduction

Influenza A viruses are endemic in many wild avian species and

can produce infections in mammals with varying morbidity and

mortality rates. In humans they cause annual epidemics and

occasional pandemics of respiratory disease with potentially fatal

outcome. Since 1997, highly pathogenic avian H5N1 viruses have

sporadically produced infections in humans but although this

emerging virus presented a high mortality rate it showed poor

transmissibility between humans and did not spread over human

population [1]. By contrast, a new influenza A virus from H1N1

subtype, possessing high transmissibility but relatively low viru-

lence, emerged in 2009 (pH1N1) rapidly spreading across the

entire globe and causing the first pandemic of the 21st century

[2,3]. Infection with the new pandemic viruses produced mild

symptoms in the majority of infected people but compared with

the previous seasonal H1N1, they caused a greater rate of severe

or complicated illness in healthy young adults and children [4,5].

The co-morbid conditions were similar for both the pH1N1 and

the previous seasonal influenza viruses and include chronic

metabolic disease, primarily diabetes mellitus and renal disease,

chronic lung and cardiac disease, immunosuppressive conditions

and neoplasms [6]. In addition, obesity and pregnancy were

associated to pH1N1 severe infections [7,8,9]. The pre-existing

immune status and the existence of underlying chronic conditions

definitely contributed to the patient outcome. However, the

reasons why some pandemic H1N1 infected patients developed

severe disease and even died, while others did not are still

unknown, as some of the infected patients developing severe

symptoms did not present obvious impairments in health

condition.

To analyze possible virulence differences, we have compared

two contemporary human pH1N1 viruses from two patients

without known co-morbid conditions, one that became fatal while

the other showed only mild respiratory disease. The results

indicate that the virus isolated from the fatal case replicates faster,

induces higher levels of cytokines in human alveolar lung epithelial

cells and is more pathogenic in a murine model in vivo, compared

with the virus obtained from the patient with mild disease. In

addition, the deceased patient was homozygous for the CCR5D32
allele, a rare genetic background found in less than 1% of the
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population [10], while the other patient was wild type for CCR5

allele.

Materials and Methods

Ethics Statement
The National Influenza Center in Madrid (which belonged to

the Instituto de Salud Carlos III) and other regional laboratories

from different Spanish regions, constituted the ReLEG network

included in the Spanish Influenza Surveillance System (SISS),

which monitored the circulation of influenza viruses each in-

fluenza season as a part of the countrywide surveillance. This study

has been developed within this activity, which was approved by

the institutional review board at the Instituto de Salud Carlos III.

All the procedures that required the use of animals complied

with Spanish and European legislation concerning vivisection and

the use of genetically modified organisms, and the protocols were

approved by the National Center for Biotechnology Ethics

Committees on Animal Experimentation and the Consejo

Superior de Investigaciones Cientı́ficas (CSIC) Bioethics Sub-

committee. In particular, we follow the Guidelines included in the

current Spanish legislation on protection for animals used in

research and other scientific aims: RD 1201/2005, 10 October

and the current European Union Directive 86/609/CEE, DOCE

12.12.86 (N.L358/1 to N.L358/28) on protection for animals used

in experimentation and other scientific aims.

Viruses
Two distinct influenza viruses named A/CastillaLaMancha/

RR5661/2009 (M) and A/CastillaLaMancha/RR5911/2009 (F),

were isolated at the National Influenza Centre (CNM, ISCIII)

from respiratory samples sent by the Spanish Influenza Surveil-

lance System for virological characterization. Isolations were made

at the middle stage of the 2009 pandemic. Both viruses belong to

Caucasian individuals. Virus M was detected in a 23 years old

man and virus F was isolated from a 35 years old woman. Both

viruses were isolated from bronchoalveolar lavages, collected in

3 ml virus transport medium (MEM, 200 U/ml penicillin,

200 mg/ml streptomycin, 200 U/ml mycostatin and 0,25% bovine

albumin fraction V). Semi-confluent monolayers of MDCK cells

were used for primary viral isolation. The monolayers were

inoculated with 200 ml of homogenized samples and when the

cytopathic effect was 75–100%, the cultures were harvested and

the supernatants used for virus stock generation by inoculation of

MDCK cells.

Virion Purification and Viral Genome High-throughput
Sequencing
For virus purification, culture supernatants of MDCK-infected

cells were centrifuged for 10 min at 10,000 rpm and 4uC. The
supernatants were sedimented through a sucrose step gradient

(TNE; 50% and 33% in 50 mM Tris-HCl, 100 mM NaCl, 5 mM

EDTA, pH 7.5) for 1 h at 40,000 rpm and 4uC in a SW41 rotor.

The 50 to 33% interphase was collected, diluted in TNE buffer,

and pelleted through a cushion of 33% sucrose in TNE for 1 h at

40,000 rpm and 4uC in a SW41 rotor. The isolation of total RNA

from the pellet was carried out using RNAeasy isolation reagent

(Quiagen) according to the manufacturer’s instructions. Appro-

priate amounts of each sample were analyzed by high-throughput

sequencing as indicated below.

Library preparation was performed using the Illumina mRNA

seq sample preparation kit (Illumina kit RS-100-0801) as pre-

viously described [11]. The quality of libraries was confirmed with

the Agilent 2100 Bioanalyzer. Sequencing was performed on the

Illumina Genome Analyzer IIx using Illumina v5 sequencing

chemistry and a 36 cycle recipe. Base calling was performed using

Illumina pipeline version 1.7.0 (within SCS 2.8). Reads were

aligned versus the genome of influenza A/California/04/2009

virus by illumina’s ELAND algorithm. The most abundant

nucleotide in each position was considered as the ‘‘consensus’’.

The algorithm MUSCLE [12] was used for aligning all pandemic

segments (amino acid sequences).

In vitro Infection
Cultured human lung alveolar epithelial cells (A549) from the

American Type Culture Collection (ATCC) were infected at

1023 PFU/cell (low moi) or 3 PFU/cell (high moi), after 1 h the

non-bound virus was rinsed off with acid PBS (pH 5.3) and at

different hours post-infection (hpi), cell supernatants were collected

and used for virus titration by plaque assay.

Cytokine Determination
The secretion of cytokines by human alveolar lung epithelial

cells (A549) infected at 3 PFU/ml with different influenza viruses

was measured 12 and 24 hpi in the culture supernatant using the

Luminex 100 technology (Cytokine Human LINCOplex, Linco

Research, Inc. St. Louis, MO, USA), following the manufacturer’s

instructions. The following 15 mediators were tested: granulocyte-

macrophage colony-stimulating factor (GM-CSF), interleukin-1a
(IL-1a), IL-1b, IL-6, IL-8, IL-10, IL-15, alpha 2 interferon (IFNa),
IFN-c, interferon gamma-induced protein 10 (IP-10), monocyte

chemotactic protein 1 (MCP-1), macrophage inflammatory pro-

tein 1b (MIP-1b), Regulated upon Activation, Normal T-cell

Expressed, and Secreted (RANTES) and tumor necrosis factor

a (TNF-a) and TNFb.

In vivo Infection
Female BALB/c AnNHsd mice (6–8 weeks old) were infected

intranasally with 106 PFU of either M or F influenza viruses or

were mock infected. The animals were monitored daily for clinical

signs and body weights. On days 2, 4, 7 and 14 dpi mice were

euthanized and necropsied. Clinical specimens from lungs,

kidneys, hearts and brains were homogenized in phosphate-

buffered saline-0.3% bovine serum albumin in a Dounce homog-

enizer and used for determination of viral titers by plaque assay.

Virus Titration
Tissue samples were homogenized (10% [wt/vol]) in PBS and

debris was pelleted by centrifugation (2,000 g, 5 min). Virus titers

of triplicate tissue samples or cell culture supernatants were

determined by standard plaque assay on MDCK cells.

Histopathology and Immunohistochemistry
Animal tissues were fixed in 10% formalin, embedded in

paraffin, sliced into 5 mm-thick sections, and stained with

hematoxylin and eosin (H&E) by conventional methods. To

visualize influenza virus in animal lungs, a polyclonal nucleopro-

tein (NP) antibody [13] was diluted in Tris buffered saline (TBS) at

1:5000, followed by incubation over night. Next, a biotinylated

secondary goat anti-rabbit antibody (Vector, Burlingame, CA) was

incubated for 30 min, followed by streptavidin horseradish

peroxidase conjugate (Invitrogen, Carlsbad, CA). Specificity of

staining was confirmed by omitting the primary antibody.

Immunostaining was revealed with DAB Peroxidase Substrate

kit 3, 39-diaminobenzidine (Vector, Burlingame, CA). Slides were

counterstained with hematoxylin, dehydrated, cleared in xylene,

and coverslipped.

High and Low Virulent pH1N1 Strains Co-Circulate
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CCR5 Allele Determination
Genotyping was performed by standard methods described

elsewhere [14]. Briefly, the RNA from bronchoalveolar lavages of

patients, mice kidneys or cultured A549 cells, was amplified using

previously reported primers surrounding the 32-bp deletion in the

CCR5 gene [15] for patient and A549 cells and 59-CATTATA-

CATGCAGTCCTC-39 and 59-GATGGCAAAGATGAGCC-

TAC-39 primers for mice DNA.

Results

To determine possible differences in virulence, we compared the

biological properties of two distinct influenza viruses named mild

(M) and fatal (F), both isolated from young patients without known

health risk conditions. Virus M was detected in a patient that

presented mild respiratory symptoms, whereas virus F was isolated

from a patient that developed severe pneumonia, was hospitalized

in the intensive care unit and died several days after admission.

Genetic Characterization of M and F Viruses
Genetic characterization of M and F viruses was performed by

ultrasequencing of purified virion RNAs obtained after two

passages in MDCK cells. The consensus sequences obtained for

the viral genomes represent more than 95% of the total sequence

reads at each position. The two viruses differed in 29 nucleotides

distributed over all the RNA segments, which produce 9 amino

acids changes affecting PB2 (1 aa), PA (3 aa), NP (1 aa), HA (3 aa)

and NA (1 aa). Three of these amino acid changes involve

conservative substitutions of basic residues (aa 269 and 328 in PA

and aa 400 in NP) (Fig. 1). The amino acid changes between M

and F viruses involve single nucleotide variations within the triplets

that encode the corresponding residue and could be considered

sequence positions in the process of genetic drift. Therefore we

examined the percentage of each nucleotide within these triplets

and the results showed that the vast majority of sequences read at

these positions represent the annotated amino acid (Table S1). To

serve as a reference, a consensus amino acid sequence was

obtained using the influenza virus resource database from NCBI

and including around one thousand 2009 pandemic viruses

isolated in the time frame of one month before and after the

isolation date of M and F viruses. Residues that differ between

these viruses are presented in Fig.1 for comparison and residues

found in M or F viruses are represented in blue or red,

respectively. Residues HA 38K, HA 226K and NA 274Y found

in the F virus are also present in the consensus sequence, but

residues HA 127L, PB2 221T and PA 529N were only detected in

F virus and appeared as particularly interesting. To exclude their

appearance in the virus stocks generated in MDCK cells, its

presence in the original F clinical isolate was confirmed by

sequencing. None of the changes in the PB2 and PA subunits had

been previously associated with increased virulence [16,17] nor

they involve the PB1-interacting domains [18,19,20,21], the PA

endonuclease active site [22,23], the PA proteolysis induction

domain [24] or the PB2 cap-binding site [25]. The changes

observed in the HA and NA glycoproteins have not been

associated previously with high virulence in either H5N1 avian

strains [26] or 2009 H1N1 pandemic viruses [27,28]. On the other

hand, none of the previously described pathogenic determinants

were found in the M or F viral sequences.

Biological Characterization of M and F Viruses in Human
Alveolar Lung Epithelial Cells
To analyze the properties of these viruses, cultures of human

alveolar lung epithelial cells (A549) were infected with each virus at

low multiplicity of infection and viral titers were determined at

different hpi. A difference of more than 2 logs in the viral titers

was observed shortly after infection (9–12 h). However, both

viruses reached similar titers at later times (Fig. 2A). The viral

replication kinetics were also examined for M and F viruses at high

multiplicity of infection (Fig. 2B). The F progeny virus was

detected as early as 6 hpi, whereas viral production was undetect-

able before 9 hpi in M virus-infected cells. Therefore, the F virus

replicates faster than M virus both at low and high multiplicity of

infection.

Cytokines Induction of M and F Viruses in Cultured Cells
To determine the capacity of the M and F viruses to induce

cytokines, their profiles were evaluated in infected human alveolar

lung epithelial cells. For comparison, the cells were also infected

with previous seasonal H1N1 virus, the A/New Caledonia/20/99

(NC) strain. Samples of A549 cells were infected in triplicate and

in all cases the cytokine induction was evaluated at 12 and 24 hpi

using the Luminex 100 System. At 12 hpi, F virus-infected cells

showed increased accumulation of pro-inflammatory cytokines

such as IL-6 (8-fold) or IL-8 (65-fold), chemokines such as

RANTES (20-fold) as well as MCP-1 (371-fold), colony-stimulat-

ing factor GM-CSF (4-fold) and IFN-a (2-fold) as compared with

M-infected cells (Fig. 3). These differences were also observed

when comparing F virus-infected cells with those infected with the

seasonal strain (NC), reinforcing the notion that the human

alveolar lung epithelial cells displayed an enhanced cytokine

response when infected with the F virus (Fig. 3). The differences

between F and M-infected cells were dissipated at 24 hours post-

infection (Fig. S1) suggesting that the cytokine induction occurred

earlier in F virus- than in M virus-infected cells. These results are

consistent with the faster replication of F virus in cell cultures.

Other cytokines, such as IFN-c, IL-1a, IL-1b, IL-10, MIP-1b, IL-

Figure 1. Amino acid differences between M and F viruses.
Residues found in M or F viruses are represented in blue or red
respectively. ‘‘Consensus’’ represents an amino acid sequence obtained
using the influenza virus resource database from NCBI and including
around one thousand 2009 pandemic viruses isolated in the time frame
of one month before and after the isolation date of M and F viruses.
Numbers in parenthesis represent the number of examined sequences,
followed by the percentage of the corresponding amino acid present in
these sequences.
doi:10.1371/journal.pone.0053515.g001

High and Low Virulent pH1N1 Strains Co-Circulate
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15, IP-10, TNF-a and TNF-b, were also examined but their

amounts were near or under the detection limit (data not shown).

Overall, the earlier and stronger induction of the pro-inflamma-

tory cytokines and chemokines observed in F virus-infected cells

correlates with the higher degree of virulence of this strain in the

patient.

Characterization of M and F Infection in Mice
Since F virus replication was faster than M virus in cell cultures,

we examined the in vivo relevance and the consequences of this

difference in the murine model. Six BALB/c mice were

intranasally infected with 106 PFU of M or F viruses or were

mock-infected. Survival and body weight were monitored daily for

two weeks. No loss of body weight was observed in mock-infected

mice whereas mice infected with M and F viruses had a peak of

weight loss 5 to 7 days after inoculation. However, in the F virus-

infected mice the weight loss was more pronounced and the

recovery of body weight was slower (Fig. 4A). Importantly, 50%

lethality on F virus-infected mice was observed in comparison with

100% survival on M virus- or mock-infected animals (Fig. 4B). In

addition, clinical symptoms such as piloerection or general activity

correlated with the morbidity (data not shown). Altogether these

results confirm that F virus is more pathogenic than the M isolate

in the murine model.

Virus Replication. Since influenza virus primarily infects the

lungs of mice, lung samples of eight infected animals were used to

determine the viral titers at different days post-infection (dpi)

(Fig. 5, Lung). At two dpi virus titer reached its maximum value

and was higher in F-infected mice. The presence of virus was

reduced gradually in the lungs of both groups of infected animals

and by 7 dpi still infectious virus was detectable, with higher viral

titers in F-infected mice but this observation was not statiscally

significant.

The detection of pH1N1 influenza virus in organs different from

the lung, such as kidney and brain has been reported [29,30,31,32]

and heart dysfunction has been associated with pH1N1 influenza

Figure 2. F virus replicates earlier than M virus. (A), Cultured A549 cells were infected at 1023 PFU/cell with the M or F isolates of influenza
virus. At the indicated hpi cell supernatants were collected and the virus titer determined by plaque assay in MDCK cells. Three independent
experiments were carried out and a representative experiment is shown. Error bars indicate the standard deviation of the mean. (B), Cultured A549
cells were infected at 3 PFU/cell with the M or F isolates of influenza virus. At the indicated hpi cell supernatants were collected and the virus titer
determined by plaque assay in MDCK cells. Three independent experiments were carried out and a representative experiment is shown. Error bars
indicate the standard deviation of the mean. Student’s t-test was performed to determine the P value. *P,0.05, **P,0.01.
doi:10.1371/journal.pone.0053515.g002

High and Low Virulent pH1N1 Strains Co-Circulate
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virus infection [33,34,35]. Therefore, we tested the possible

presence of influenza virus in these organs. Infectious virus was

not detected in the kidneys or brains but it was detected in the

hearts (Fig. 5 Heart). Five of the eight F virus-infected animals

presented infectious virus at 2 dpi and one of them presented

infectious virus at 4 dpi. Infectious virus was found only in one of

the M-infected animals at 2 dpi (Fig. 5).

Histopathology. In domestic animals influenza viruses pro-

duce bronchointerstitial pneumonia characterized by the appear-

ance of both bronchiolar necrosis and diffuse alveolar damage

[36]. Then, we investigated whether histopathological differences

were present in the lungs of M and F virus-infected mice at three

different days post-infection. Macroscopically, the lungs of the F

mice displayed evident signs of necrosis while the lungs of the M

mice displayed a moderate damage (data not shown). Microscop-

ically, the lungs of both M and F-infected mice showed

bronchiolar necrosis with bronchioles filled of cellular debris that

became more severe with the progression of the infection. In

addition, proliferation of macrophages and type II pneumocytes

was observed, as a representative lesion of interstitial pneumonia

together with vasculitis with mild interstitial reaction at late dpi

(data not shown). However, F-infected mice showed bronchointer-

Figure 3. Profile of cytokines induction on A549 infected cells. Samples of A549 cells were infected in triplicate at 3 PFU/cell with the A/New
Caledonia/20/99 (NC), the M or the F pandemic H1N1 isolates. At 12 hpi cell supernatants were taken and used to determine the concentration of the
indicated cytokines using the Luminex 100 System. Error bars indicate the standard deviation of the mean. Student’s t-test was performed to
determine the P value. *P,0.05, **P,0.01.
doi:10.1371/journal.pone.0053515.g003

High and Low Virulent pH1N1 Strains Co-Circulate
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stitial pneumonia with more interstitial compound and early in the

infection (2 dpi) in comparison to M- infected mice (7dpi) (Fig. 6).

Moreover, in the F-infected lungs formation of syncitial cells by

7 dpi was evident and hyperplasia of phagocytic cells was observed

at 14 dpi, both as representatives of inflammation. This prominent

histopathological damage that distinguishes the M and F in vivo

infection and is summarized in Fig. 7, correlates with the clear

differences previously observed in the mortality rates in the mouse

model (Fig. 4).

Immunohistochemistry. Next, immunohistochemistry

analysis was performed to detect the presence of NP viral protein

in the lung cells of M and F virus-infected mice at different days

post-infection. Animals inoculated with either virus showed very

strong immunostaining reaction in bronchiolar epithelial cells at

2 dpi and in the interstitial cells at 2–4 dpi (data not shown). In M

virus-infected mice the bronchiolar reaction was progressively

reduced to become negative at 14 dpi (Fig. 8 a–c). The interstitial

reaction, in macrophages and/or type II pneumocytes, was

moderate in isolated cells at 7 days and negative after 14 dpi

(Fig. 8 d,e). Mice inoculated with F virus showed at 4 and 7 dpi

a moderate to strong antigen positive bronchiolar reaction, (Fig. 8

f–h) and the interstitial reaction was moderate in isolated cells

between 7 and 14 dpi (Fig. 8 i,j). The most striking differences

between the immunohistochemical features in the two animal

groups was that at 14 dpi antigen-positive bronchiolar desqua-

mated cells were still detected and a mild reaction appeared in

isolated interstitial macrophages in the F-inoculated animals. A

summary of NP antigen detection in the lungs of the infected mice

is presented in Fig. 9. Although no viral titer was detected in lungs

of any mice by 14 dpi, discrete viral antigen positive cells were

Figure 4. F virus is more pathogenic than M virus in vivo. Six mice were intranasally inoculated with 106 PFU (50 ml) of either M or F influenza
viruses or were mock infected with 50 ml of PBS. (A), Body weights were determined daily for 14 days and are depicted as the percentage of body
weights at time of inoculation. Data show body weights mean of mice (n = 6). Error bar represent standard deviation. (B), Mice were monitored daily
for survival for 14 days. Animals that lost 25% of its body weight were euthanized and counted as dead animals. For body weights, Student’s t-test
was performed to determine the P value. *P,0.05, ***P,0.001. For survival, statistical significance was assessed by a Logrank (Mantel-Cox) Test.
*P,0.05.
doi:10.1371/journal.pone.0053515.g004

High and Low Virulent pH1N1 Strains Co-Circulate
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present in lungs of F virus but not M virus-infected mice,

suggesting a slower kinetics of F virus clarification.

Determination of Chemokine Receptor 5D32 Allele in M
and F- infected Patients
The chemokine receptor CCR5 is expressed on activated

macrophages and plays an important role in the macrophage

response to influenza virus infection since knock out mice for Crc5

gene display increased mortality rates [37]. Moreover, critically ill

patients infected with pandemic H1N1 virus showed a large

proportion of heterozygosity for a deleted allele of CCR5 that

prevents the surface expression of the protein (CCR5D32) [15].
With this information we examined whether the patients from

whom the M and F viruses were isolated displayed differences in

the CCR5 alleles. Bronchoalveolar lavages were used to isolate

total nucleic acids that were used for RT-PCR reactions. RNA was

amplified by using previously reported primers surrounding the

32-bp deletion in the CCR5 gene [15]. Wild-type CCR5 RNA

results in a 197-bp product, but the D32 allele yields a 165-bp

product. The amplified products were analyzed in agarose gels

together with the amplification products obtained from previously

characterized CCR5 homozygous (wt) and heterozygous (ht)

human samples. The results showed that the M virus-infected

patient was homozygous for the wild type CCR5 allele, but the F

virus-infected patient was homozygous for the CCR5D32 deletion

(Fig. 10, top). These results were further confirmed by sequencing

the amplification products (Fig. 10, bottom).

All data reported above indicated that F virus replicates faster

than M virus in human A549 cells and is more pathogenic in mice.

Since the CCR5 receptor could play a role in virus pathogenicity

we performed genotypic analysis of the mice used in this study, as

well as the A549 cell line. Thus, RNA samples isolated from mice

kidneys or A549 cells were used for RT-PCR reaction and further

sequencing of the Ccr5 region that comprises the 32-bp deletion

using specific primers for the human or mouse genes. The results

obtained verified that all samples were homozygous for the wild

type Ccr5 allele (Fig. S2). Therefore, the differences observed for F

and M viruses in the in vitro replication rates (Fig. 2), the pro-

inflammatory cytokines and chemokines production (Fig. 3) and

the pathogenicity in mice (Fig. 4) are independent of CCR5 and

rely exclusively on sequence differences between the two viral

genomes.

Discussion

Although the 2009 H1N1 pandemic virus caused relatively mild

symptoms in most cases, sporadic severe disease or even death of

infected patients was observed. The molecular basis for the

severity of certain H1N1 pandemic infections has been a subject of

intense scrutiny, including the analysis of potential virus pathoge-

nicity markers and host predisposition, as well as co-morbid

conditions in the patients. Here we have compared the viruses

from two contemporary pH1N1 infected patients with no known

co-morbid conditions that one developed a clinically mild disease

(M) and the other resulted in a fatal case (F).

Cytokines in Influenza Virus Infection
Recognition and rapid clearance of pathogens by the innate

immune system provides the first line of defense upon infection.

However, pathological inflammation is produced when excessive

activation of the innate immune system occurs. Several reports

pointed out the role of an excessive cytokine response (known as

a cytokine storm) as a key contributor to morbidity and mortality

of highly virulent 1918 and avian H5N1 influenza virus infections

[38,39] as well as in severe cases of pH1N1 influenza virus

infection [40]. Accordingly, high levels of expression of a significant

number of cytokines have been described in fatal cases of pH1N1

influenza virus infection [41]. The profile of cytokine response in

severe pH1N1 influenza virus infections revealed a hyperactivation

of the proinflammatory cytokines IL-6, IL-8, MCP-1, MIP-1b,
GM-CSF and TNRF-1 that was not apparent in milder pH1N1

infections [42,43,44,45,46]. In addition an increase in RANTES

whose natural receptor is CCR5, has been described in the

bronchoalveolar lavage of patients with severe pneumonia

associated with pH1N1 infections [47]. Among these proinflam-

matory cytokines, IL-6 may play an important role mediating

severe disease caused by influenza virus infection, since increased

levels of this cytokine correlate with infection with high virulent

H1N1 strain in ferrets [48], severe infections of macaques with

1918 influenza virus [38] and pH1N1 virus [28], a fatal human

case of pH1N1 [49] and with severe clinical manifestations in

infected patients [50].

Analysis of cytokines induction in infected human alveolar

epithelial cells with the M and F viruses as well as the seasonal A/

New/Caledonia/20/99 (NC) strain revealed that F virus infection

induces earlier and higher levels of IL-6, IL-8, MCP-1, GM-CSF

Figure 5. Virus titer in organs of M and F infected mice. Mice
were intranasally inoculated with 106 PFU (50ml) of either M or F
influenza viruses. Eight mice from each group were euthanized on days
2, 4 and 7 post-infection for virus titration. Bars show mean of each
group. Student’s t-test was performed to determine the statistical
significance. *P,0.05.
doi:10.1371/journal.pone.0053515.g005
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and RANTES than M or NC infections (Fig. 3). Besides the role

described for IL-6, IL-8, MCP-1 and GM-CSF in patients with

pH1N1 severe infections, the chemokine RANTES, a natural

agonist of CCR5 seems to control the production of IL-6, IL-8,

MCP-1 and IFNs in influenza virus-infected cultured alveolar

epithelial cells [51]. Therefore, it is conceivable that high levels of

these chemokines and pro-inflammatory cytokines would in-

crement cellular recruitment to the lungs at earlier times, thus

contributing to inflammation and tissue consolidation. Indeed,

there was a moderate increase in the histopathological damage in

F virus- versus M virus-infected mice (Fig. 6–7). Also, this rapid

induction of pro-inflammatory cytokines and chemokines supports

the notion that a deregulation of the host immune response in the

early stages of the infection, might contribute to increase the

severity associated with more virulent pH1N1 strains.

Pandemic H1N1 Influenza Virus Infection in vivo
The comparison of the F and M viruses in the murine model

showed that F virus was more pathogenic, as indicated by the

morbidity and mortality rates observed in the F-infected mice. The

pathogenicity of several pH1N1 viruses in mice has been studied

previously. Mice infected with pH1N1 virus showed weight loss

and high titers in the lung but in most studies more than 106 PFU

were required to reach a 50% lethal dose or even the mice

survived at the highest dose used [32,52,53]. In a particular study,

the characterization of several strains of pH1N1 viruses in mice

indicated efficient replication in the lungs but not extrapulmonary

virus spread and no lethality, suggesting that pandemic viruses

display mild to moderate virulence when compared with highly

pathogenic viruses such as the 1918 virus [54]. In contrast 50% of

the mice infected at 106 PFU with the F virus but not with the M

virus died, indicating that F virus is more pathogenic than other

pH1N1 viruses. Moreover, infectious virus was recovered in higher

proportion of animals and remained at later days post-infection in

the hearts of F virus-infected mice (Fig. 5). Efficient dissemination

of F virus might have contributed also to increase the severity of

the infection. Accordingly, viral particles have been found in the

hearts of both domestic ducks infected with H5N1 highly

pathogenic avian virus [55] and fatal cases of 2009 pandemic

infected patients [56]. Extrapulmonary complications of influenza

virus infection have been previously reported. Around 50% of

patients without previous cardiac history have abnormal electro-

cardiogram findings [57] and a link has been recently reported

between influenza infection and acute myocardial infarction [58]

and fulminant myocarditis in children [59] and adults [60].

Figure 6. Histopathology of lungs of mice inoculated with M virus (a–d) or F virus (e–h). Lung samples of M and F virus-infected mice were
used for histopathological H&E examination at the indicated days post-infection. ba r = 50 mm. Lung of mouse inoculated with M virus, a) 2 dpi. Mild
congestion and diffuse lymphoid and phagocytic cells infiltrates in the interstitium. b) 4 dpi. Moderate thickened of interalveolar walls c) 7 dpi.
Interstitial pneumonia with moderate proliferation of pneumocytes type II. d) 14 dpi. Interstitial pneumonia with thickened interalveolar walls. Lung
of mouse inoculated with F virus, e) 2 dpi. Thickened interalveolar walls with consolidation of the pulmonary parenchima (interstitial pneumonia). f)
4 dpi. Moderate increase of interstitial macrophages. g) 7 dpi. Increase of macrophages and syncitial cells formation. h) 14 dpi. Severe hyperplasia of
phagocytic cells in the interstitium. The arrows show some examples of the lesion indicated in each case.
doi:10.1371/journal.pone.0053515.g006

Figure 7. Histopathological signs of the lungs of the M and F-
infected mice. Histopathological lesions (1: mild; 2: moderate; 3:
severe). Numbers in blue (M virus) or red (F virus) highlight
histopathological differences between both viruses.
doi:10.1371/journal.pone.0053515.g007
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Individuals who died with a confirmed influenza pandemic

H1N1 virus infection showed some degree of bronchiolar

epithelial necrosis and desquamation, as well as a pattern of

exudative diffuse alveolar damage [61,62,63]. The histopatholog-

ical and immunohistochemical examination of M virus- and F

virus-infected mice detected more aggressive interstitial pneumo-

nia or diffuse alveolar damage in the lungs of the F virus-infected

mice, together with lung positive cells for NP antigen at late times

post-infection. The results are consistent with the histophatological

findings in autopsies of pandemic H1N1 infected patients that

showed diffuse alveolar damage, acute massive intra-alveolar

edema, neutrophilic bronchopneumonia and tracheobronchitis

with some histopathological changes in alveoli [49,62].

Viral and Host Genetic Determinants
The genetic background of both the virus and the host are

essential to determine the final outcome of an infection. Genetic

determinants of influenza virus virulence have been mainly

mapped to the polymerase genes (PB1, PB2 and PA), the

hemagglutinin (HA), neuraminidase (NA), and non-structural

protein 1 (NS1) [64]. In the case of pandemic H1N1 viruses,

mutation D222G in the HA appeared as particularly relevant

since it was significantly more frequent in severe cases of disease

[65,66,67,68]. Other reports described substitutions in the PB2

and PA polymerase genes [28] that were associated with severe

disease and correlated with increased virulence in animal models

[28,69]. In other studies, no correlation between the clinical data

and the virus replication capacity or virulence in mice could be

observed [70] and no evidence was found that fatality rate could

be attributed to specific virus changes in infected patients from

Argentina [71]. Sequence comparison of M and F influenza

viruses revealed 9 amino acid differences affecting the PB2 and PA

polymerase subunits, the NP, HA and NA (Fig. 1). Besides the

three conservative changes already described (aa 269 and 328 in

PA and aa 400 in NP), aa 38K and 226K in HA and 274Y in NA

that have been found in F virus are also present in the consensus

sequence of contemporary pandemic viruses (Fig. 1), suggesting

that these differences represent random drift or early virus

adaptation to the new human host. However, mutations HA

S127L, PB2 A221T and PA D529N have been observed very

scarcely among the pH1N1 strains, human seasonal strains, avian

and swine viruses (Table S2). In fact the total calculated frequency

of appearance of HA S127L, PB2 A221T and PA D529N changes

in the influenza viruses present in these host is 0.069%, 0.19% and

0.048%, respectively (Table S2) analyzed using the influenza virus

resource databases from NCBI. On the other hand, no data exist

either in the literature or in the data bases, reporting the sequence

of any influenza A virus containing HA 127L, PB2 221T and PA

529N simultaneously, indicating that F virus is very infrequent and

Figure 8. Immunostaining of lungs of mice inoculated with M virus (a–e) or F virus (f–j). Lung samples of M and F virus-infected mice were
used for immunostaining with anti-influenza nucleoprotein antibody, bar = 50 mm. Lung of mouse inoculated with M virus, a) 4 dpi. Moderate
immunoreaction in the epithelial cells of the bronchiole, b) 7 dpi. Mild to moderate immunoreaction in the epithelial cells of the bronchiole and in
the macrophages of the interstititum, c) 14 dpi. Negative immunorection in all the pulmonary structures, d) 7 dpi. Moderate immunoreaction in the
phagocytic cells of the pulmonary interstitium, e) 14 dpi. Negative immunorection in the interstitium. Lung of mouse inoculated with F virus, f) 4 dpi.
Moderate immunoreactions in the apical pole of epithelial cells of the bronchiole, g) 7 dpi. Moderate immunoreaction in the necrotic and phagocytic
cells desquamates into bronchiolar lumen, h) 14 dpi. Mild immunoreaction in the necrotic debris into bronchiolar lumen. Moderate immunoreaction
in the pulmonary interstitium, i) 7 dpi. Moderate immunoreaction in the phagocytic cells of the interstitium with consolidation of the lung (Interstitial
lung disease), j) 14 dpi. Mild immunoreaction in the phagocytic cells of the interstitium. The arrows show some influenza virus infected cells.
doi:10.1371/journal.pone.0053515.g008

Figure 9. Immunohistochemistry of the lungs of the M and F-
infected mice. Positive reaction to viral antigen in the bronquiole
(epithelium and/or desquamate cells) and interstitia (pneumocytes and/
or macrophages) at different days of inoculation. (-: absence; 1: mild; 2:
moderate; 3: strong). Numbers in blue (M virus) or red (F virus) highlight
immunohistochemistry differences between both viruses.
doi:10.1371/journal.pone.0053515.g009
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could have been generated and/or selected in the patient. These

PB2 and PA residues are not present in any previously described

functional motives of the polymerase subunits. On the other hand,

HA 127 residue has not been previously involved in the structure

of the pH1N1 HA antigenic sites or the receptor-binding pocket

[72]. We are presently assessing the potential role of these amino

acids as virulence markers.

Potential influenza virus host genetic determinants have been

described and a significant increase on heterozygosis of a CCR5

allele that contains a 32 bp deletion (CCR5D32) has been

correlated with more severe course of the pH1N1 infection in

a small cohort [15]. Recently, we have performed a screening with

more than 200 samples, examining the presence of this mutation

among Spanish patients with confirmed diagnosis of pH1N1

infection and its correlation with the severity of illness. Using a chi-

square with Yates’ correction a significant increase in the

proportion of fatal cases within patients with the CCR5D32
mutation has been found (M. Cuevas et al. submitted). Around

15–20% of the Caucasian population is heterozygous for the

CCR5D32 allele, whereas the proportion of CCR5D32 homozygous

is below 1% [10]. The homozygous deletion results in failure to

express the receptor on the cell surface and therefore a total

inactive CCR5 receptor. Influenza virus infected Ccr5 knock-out

mice display an accelerated macrophage accumulation in the lungs

that is likely to be linked to enhanced expression of MCP-1 and

RANTES and increased mortality rates associated with acute,

severe pneumonitis [37]. Although a profounder characterization

of the consequences of CCR5D32 homozygosis for influenza virus

infection is required, our data with those of other laboratories

support a CCR5 role in the course of influenza virus infection.

Other potential influenza virus genetic determinants have been

recently described as an increase on a single nucleotide poly-

morphism allele of the tumor necrosis factor [73] or an enrichment

of a minor interferon-inducible transmembrane (IFITM) protein

allele [74].

In summary, the F (A/CastillaLaMancha/RR5911/2009) virus

replicates and induces cytokines in human alveolar epithelial cells

very fast, including the pro-inflammatory IL-6 and IL-8 cytokines

and the chemokine RANTES that seem to play an important role

in influenza virus infection. In the murine model in vivo, the F virus

showed a stronger morbidity and mortality than M virus and

moreover higher proportion of mice having viral particles in the

hearts of F-virus infected mice was found. Therefore the F patient

was infected with a potential highly pathogenic virus and its

genetic background of CCR5D32 homozygous could contribute to

the severity of the infection.

Supporting Information

Figure S1 Profile of cytokines induction on A549 infected cells

at 24 hpi. Cultured cells were infected at 3 PFU/cell with the A/

New Caledonia/20/99 (NC) and the H1N1 pandemic M and F

isolates. At 24 hpi cell supernatants were taken and used to

determine the concentration of the indicated cytokines using the

Luminex 100 System. Error bars indicate the standard deviation of

the mean. Student’s t-test was performed to determine the P value.

*P,0.05, **P,0.01, ***P,0.001,

(PDF)

Figure S2 Ccr5 allele determination. Samples of cultured A549

(top) and kidneys from infected or uninfected mice (bottom)were

used to isolate total RNA that was used for RT-PCR reactions and

DNA sequencing to detect the CCR5 region that comprises the 32-

Figure 10. CCR5 allele determination. Samples of bronchoalveolar lavages of M and F infected patients were used to isolate total RNA that was
used for RT-PCR reactions and DNA sequencing to detect the CCR5 region that comprises the 32-bp deletion. (Top), agarose gels with the amplified
fragments from a human heterozygous sample (Ht), a wild type homozygous sample (Wt), the M-infected patient (M) and two independent samples
taken from the F-infected patient. (Bottom), sequence determination of the M and F-infected patients. Sequences present in the databases for the
human wild type CCR5 receptor allele (CCR5 H. sapiens) or the deleted allele (CCR5D32 H.sapiens), have been used for comparison.
doi:10.1371/journal.pone.0053515.g010
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bp deletion. The sequence of the CCR5 allele from human (CCR5

H. sapiens) or mice (Ccr5 M. musculus) have been used for

comparison. The red line corresponds to the 32 bp deletion found

in the CCR5D32 samples.

(PDF)

Table S1 Nucleotides at the indicated positions of M and F

RNAs.

(PDF)

Table S2 Frequency of different residues at PB2 221, PA 529

and HA 127 positions in human, swine and avian viruses.

(PDF)
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