39 research outputs found

    Gorlin Goltz syndrome: a rare case report

    Get PDF
    Gorlin-Goltz syndrome is uncommon multisystemic disease with an autosomal dominant trait, with complete penetrance and variable expressivity, though sporadic cases have been described. We report a case of 18 years old male patient having features of Gorlin Goltz syndrome. Gorlin-Goltz syndrome is characterized by multiple basal cell nevi or carcinomas, odontogenic keratocysts, palmar and/or plantar pits, calcification of the falx cerebri, and is associated with internal malignancies. It is important to know the major and minor criteria for the diagnosis and early preventive treatment of this syndrome

    Coinfections and their molecular consequences in the porcine respiratory tract

    Get PDF
    Understudied, coinfections are more frequent in pig farms than single infections. In pigs, the term “Porcine Respiratory Disease Complex” (PRDC) is often used to describe coinfections involving viruses such as swine Influenza A Virus (swIAV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), and Porcine CircoVirus type 2 (PCV2) as well as bacteria like Actinobacillus pleuropneumoniae, Mycoplasma hyopneumoniae and Bordetella bronchiseptica. The clinical outcome of the various coinfection or superinfection situations is usually assessed in the studies while in most of cases there is no clear elucidation of the fine mechanisms shaping the complex interactions occurring between microorganisms. In this comprehensive review, we aimed at identifying the studies dealing with coinfections or superinfections in the pig respiratory tract and at presenting the interactions between pathogens and, when possible, the mechanisms controlling them. Coinfections and superinfections involving viruses and bacteria were considered while research articles including protozoan and fungi were excluded. We discuss the main limitations complicating the interpretation of coinfection/superinfection studies, and the high potential perspectives in this fascinating research field, which is expecting to gain more and more interest in the next years for the obvious benefit of animal health

    Memory profiles distinguish cross-reactive and virus-specific T cell immunity to mpox

    Get PDF
    Mpox represents a persistent health concern with varying disease severity. Reinfections with mpox virus (MPXV) are rare, possibly indicating effective memory responses to MPXV or related poxviruses, notably vaccinia virus (VACV) from smallpox vaccination. We assessed cross-reactive and virus-specific CD4+ and CD8+ T cells in healthy individuals and mpox convalescent donors. Cross-reactive T cells were most frequently observed in healthy donors over 45 years. Notably, long-lived memory CD8+ T cells targeting conserved VACV/MPXV epitopes were identified in older individuals more than four decades after VACV exposure and exhibited stem-like characteristics, defined by T cell factor-1 (TCF-1) expression. In mpox convalescent donors, MPXV-reactive CD4+ and CD8+ T cells were more prevalent compared to controls, demonstrating enhanced functionality and skewing towards effector phenotypes, which correlated with milder disease. Collectively, we report robust effector memory MPXV-specific T cell responses in mild mpox and long-lived TCF-1+ VACV/MPXV-specific CD8+ T cells decades after smallpox vaccination

    Identification of Novel Loci Regulating Interspecific Variation in Root Morphology and Cellular Development in Tomato

    No full text
    While the Arabidopsis (Arabidopsis thaliana) root has been elegantly characterized with respect to specification of cell identity, its development is missing a number of cellular features present in other species. We have characterized the root development of a wild and a domesticated tomato species, Solanum pennellii and Solanum lycopersicum ‘M82.’ We found extensive differences between these species for root morphology and cellular development including root length, a novel gravity set point angle, differences in cortical cell layer patterning, stem cell niche structure, and radial cell division. Using an introgression line population between these two species, we identified numerous loci that regulate these distinct aspects of development. Specifically we comprehensively identified loci that regulate (1) root length by distinct mechanisms including regulation of cell production within the meristem and the balance between cell division and expansion, (2) the gravity set point angle, and (3) radial cell division or expansion either in specific cell types or generally across multiple cell types. Our findings provide a novel perspective on the regulation of root growth and development between species. These loci have exciting implications with respect to regulation of drought resistance or salinity tolerance and regulation of root development in a family that has undergone domestication

    Identification of Novel Loci Regulating Interspecific Variation in Root Morphology and Cellular Development in Tomato

    No full text
    While the Arabidopsis (Arabidopsis thaliana) root has been elegantly characterized with respect to specification of cell identity, its development is missing a number of cellular features present in other species. We have characterized the root development of a wild and a domesticated tomato species, Solanum pennellii and Solanum lycopersicum ‘M82.’ We found extensive differences between these species for root morphology and cellular development including root length, a novel gravity set point angle, differences in cortical cell layer patterning, stem cell niche structure, and radial cell division. Using an introgression line population between these two species, we identified numerous loci that regulate these distinct aspects of development. Specifically we comprehensively identified loci that regulate (1) root length by distinct mechanisms including regulation of cell production within the meristem and the balance between cell division and expansion, (2) the gravity set point angle, and (3) radial cell division or expansion either in specific cell types or generally across multiple cell types. Our findings provide a novel perspective on the regulation of root growth and development between species. These loci have exciting implications with respect to regulation of drought resistance or salinity tolerance and regulation of root development in a family that has undergone domestication
    corecore