7 research outputs found

    Palaeodemographic modelling supports a population bottleneck during the Pleistocene-Holocene transition in Iberia

    Get PDF
    Demographic change lies at the core of debates on genetic inheritance and resilience to climate change of prehistoric hunter-gatherers. Here we analyze the radiocarbon record of Iberia to reconstruct long-term changes in population levels and test different models of demographic growth during the Last Glacial-Interglacial transition. Our best fitting demographic model is composed of three phases. First, we document a regime of exponential population increase during the Late Glacial warming period (c.16.6-12.9 kya). Second, we identify a phase of sustained population contraction and stagnation, beginning with the cold episode of the Younger Dryas and continuing through the first half of the Early Holocene (12.9-10.2 kya). Finally, we report a third phase of density-dependent logistic growth (10.2-8 kya), with rapid population increase followed by stabilization. Our results support a population bottleneck hypothesis during the Last Glacial-Interglacial transition, providing a demographic context to interpret major shifts of prehistoric genetic groups in south-west Europe

    Dating bones near the limit of the radiocarbon dating method: study case mammoth from Niederweningen, ZH Switzerland

    Full text link
    Preparation of bone material for radiocarbon dating is still a subject of investigation. In the past, the most problematic ages appeared to be the very old bones, i.e. those with ages close to the limit of the dating method. Development of preparative methods requires sufficient amounts of bone material as well as the possibility of verification of the ages. In the peat section at Niederweningen, ZH Switzerland, numerous bones of mammoth and other animals were found in the late 19th century. The first accelerator mass spectrometry (AMS) radiocarbon ages of those bones from 1890/1891 excavations placed the age between 33,000 and 35,000 BP. The excavations in 2003/2004 provided additional material for 14C dating. An age of 45,870 ± 1080 BP was obtained on base (NaOH step) cleaned gelatin from mammoth bone, which was very close to the age of 45,430 ± 1020 BP obtained for the peat layer that buried the mammoths. The 14C age of gelatin cleaned using the ultrafiltration method obtained in this study, 45,720 ± 710 BP, is in a very good agreement with the previously obtained results. Moreover, the study shows that 3 pretreatment methods (base+Longin, Longin+ultrafiltration, and base+Longin+ultrafiltration) give ages consistent with each other and with the age of the peat section

    Bayesian chronological analyses consistent with synchronous age of 12,835–12,735 Cal B.P. for Younger Dryas boundary on four continents

    No full text
    The Younger Dryas impact hypothesis posits that a cosmic impact across much of the Northern Hemisphere deposited the Younger Dryas boundary (YDB) layer, containing peak abundances in a variable assemblage of proxies, including magnetic and glassy impact-related spherules, high-temperature minerals and melt glass, nanodiamonds, carbon spherules, aciniform carbon, platinum, and osmium. Bayesian chronological modeling was applied to 354 dates from 23 stratigraphic sections in 12 countries on four continents to establish a modeled YDB age range for this event of 12,835–12,735 Cal B.P. at 95% probability. This range overlaps that of a peak in extraterrestrial platinum in the Greenland Ice Sheet and of the earliest age of the Younger Dryas climate episode in six proxy records, suggesting a causal connection between the YDB impact event and the Younger Dryas. Two statistical tests indicate that both modeled and unmodeled ages in the 30 records are consistent with synchronous deposition of the YDB layer within the limits of dating uncertainty (∼100 y). The widespread distribution of the YDB layer suggests that it may serve as a datum layer
    corecore