434 research outputs found

    America For Sale? Foreign Investments in the U.S., a German Perspective

    Full text link
    The University of Georgia School of Law’s Dean Rusk Center and UGA’s German-American Law Society sponsored a panel discussion on the potential impacts of foreign investments in the United States. The lecture, titled America For Sale? Foreign Investments in the U.S., a German Perspective, took place on Feb. 16, 2010 at 12:30 p.m. in the Larry Walker Room of Dean Rusk Hall

    Stability of Rock Slopes along Raidah Escarpment Road, Asir Area, Kingdom of Saudi Arabia

    Get PDF
    The Raidah Escarpment road is located north west of Abha city, Asir region, Kingdom of Saudi Arabia. This escarpment road represents an important corridor in the area which connects different villages and tourist resorts with each other. The total length of this road section is about 9 km which passes through a highly mountainous area. The road also passes through areas of different geological hazards (rock, debris flow, soil, and weathered zones). The different environmental factors (e.g. intensive rainy summer), variable geological and structural elements (weak rocks, slide debris weak soils, shear zones, and faults) difficult road characteristics (narrow roads with tight horizontal andvertical curvature) and various human activities in the area make the road susceptible to frequent slope failures (rockfalls, rock sliding, debris flow, soil slides, and raveling) from time to time. This paper deals with the evaluation of the stability of the rock cuts along the Raidah escarpment road using two methods including a structural controlled method and a raveling type method. Raidah escarpment rock cuts have been classified into sixty nine stations which were investigated and subsequently rated. Results of this study indicated that: (1) Based on the structiural control mode of failures, it was found that 12 stations are potentially unstable due to planar, wedge, and toppling failures, and out of them five stations have a major impact on the road in the event of failure, including stations 11, 17, 20, 31, and 40. (2) According to the Modified Colorado Rockfall hazard rating system, it was found that 13, 12, 13, 17, and 49 stations are of high, high to moderate, moderate, moderate to low, and low hazard. On the other hand, it was found that 13, 11, 11, and 69 stations have a high, high to moderate, moderate, and low impact on the road in the case of failure. (3) According to the field simulation tests it was found that 6 stations potentially show highly problems from rolling and bouncing rocks. However, out of these sites it was found that only 4 stations have a high impact on the road due to rolling and bouncing. (4) the areas that are impacted by the debris flows have been mapped and determined. Finally, different recommendations and remediation methods have been discussed to minimise the impact of problimatic sites

    Analysis of cilia dysfunction phenotypes in zebrafish embryos depleted of origin recognition complex factors

    Get PDF
    Meier–Gorlin syndrome (MGS) is a rare, congenital primordial microcephalic dwarfism disorder. MGS is caused by genetic variants of components of the origin recognition complex (ORC) consisting of ORC1–6 and the pre-replication complex, which together enable origin firing and hence genome replication. In addition, ORC1 has previously been shown to play a role in ciliogenesis. Here, we extend this work and investigate the function of ORC1 and two other members of the complex on cilia at an organismal level. Knockdown experiments in zebrafish confirmed the impact of ORC1 on cilia. ORC1-deficiency confers defects anticipated to arise from impaired cilia function such as formation of oedema, kidney cysts, curved bodies and left–right asymmetry defects. We found ORC1 furthermore required for cilium formation in zebrafish and demonstrate that ciliopathy phenotypes in ORC1-depleted zebrafish could not be rescued by reconstitution with ORC1 bearing a genetic variant previously identified in MGS patients. Loss-of-function of Orc4 and Orc6, respectively, conferred similar ciliopathy phenotypes and cilium shortening in zebrafish, suggesting that several, if not all, components of the ORC regulate ciliogenesis downstream to or in addition to their canonical function in replication initiation. This study presents the first in vivo evidence of an influence of the MGS genes of the ORC family on cilia, and consolidates the possibility that cilia dysfunction could contribute to the clinical manifestation of ORC-deficient MGS

    Temporal LiDAR Scanning in Quantifying Cumulative Rockfall Volume and Hazard Assessment: A Case Study at Southwestern Saudi Arabia

    Get PDF
    Rockfalls and unstable slopes pose a serious threat to people and property along roads/highways in the southwestern mountainous regions of Saudi Arabia. In this study, the application of terrestrial light detection and ranging (LiDAR) technology was applied aiming to propose a strategy to analyze and accurately depict the detection of rockfall changes, calculation of rockfall volume, and evaluate rockfall hazards along the Habs Road, Jazan Region, Saudi Arabia. A series of temporal LiDAR scans were acquired at three selected sites. Our results show that these three sites have different degrees of hazard due to their geological differences. The mean volume loss of sites A1, A2, and A3 is 327.1, 424.4, and 3.7 L, respectively. Statistical analysis confirms the significance of the influence of site type on rockfall volume, with a probability value of \u3c 0.0105. The rockfall volume and change detection values are then correlated with precipitation, which is a triggering factor. The study also reveals that the use of terrestrial LiDAR could reduce time and effort, increase accessibility, and produce effective solutions. LiDAR could be an indispensable tool for disaster risk assessment, response and recovery process

    Effect of Food Distribution on Northern Bobwhite Resource Selection

    Get PDF
    Supplemental feeding is a common management tactic used to increase survival and reproduction of northern bobwhite (Colinus virginianus; hereafter, bobwhite). Different supplemental feeding methods alter the distribution of resources across a landscape in unique ways and may influence the space use and resource selection of target species differently. Predators may concentrate their movements near fed sites, and different distributions of supplemental feed may encourage bobwhite to concentrate their movements closer to feed than other areas, thereby altering the potential for predator-prey interactions near feed. We used radio-tracked locations and movements in areas with stationary feeders (“feeder fed”) and nonsupplementally fed (“unfed”; study 1, year 1) or nonstationary “broadcast fed” (study 2, year 2) areas to compare resource selection within a Bayesian framework. Second- and third-order resource selection functions indicated bobwhite were more likely to occur in proximity to feeders and feedlines when available, but bobwhite resource selection was more strongly affected by feeders. These results demonstrate that different distributions of food resources can affect prey resource selection, potentially altering the probability of overlap between nontarget predator and target prey species. Managers of bobwhite populations should broadcast feed instead of using feeders to avoid concentrations of bobwhites, which may lead to reduced survival

    Benthic phosphorus cycling within the Eurasian marginal sea ice zone

    Get PDF
    The Arctic Ocean region is currently undergoing dramatic changes, which will likely alter the nutrient cycles that underpin Arctic marine ecosystems. Phosphate is a key limiting nutrient for marine life but gaps in our understanding of the Arctic phosphorus (P) cycle persist. In this study, we investigate the benthic burial and recycling of phosphorus using sediments and pore waters from the Eurasian Arctic margin, including the Barents Sea slope and the Yermak Plateau. Our results highlight that P is generally lost from sediments with depth during organic matter respiration. On the Yermak Plateau, remobilization of P results in a diffusive flux of P to the seafloor of between 96 and 261 ”mol m−2 yr−1. On the Barents Sea slope, diffusive fluxes of P are much larger (1736–2449 ”mol m−2 yr−1), but these fluxes are into near-surface sediments rather than to the bottom waters. The difference in cycling on the Barents Sea slope is controlled by higher fluxes of fresh organic matter and active iron cycling. As changes in primary productivity, ocean circulation and glacial melt continue, benthic P cycling is likely to be altered with implications for P imported into the Arctic Ocean Basin

    Circulating sclerostin levels are positively related to coronary artery disease severity and related risk factors

    Get PDF
    Romosozumab is a newly available treatment for osteoporosis acting by sclerostin inhibition. Its cardiovascular safety has been questioned after finding excess cardiovascular disease (CVD)‐related events in a pivotal phase 3 trial. Previous studies of relationships between circulating sclerostin levels and CVD and associated risk factors have yielded conflicting findings, likely reflecting small numbers and selected patient groups. We aimed to characterize relationships between sclerostin and CVD and related risk factors in more detail by examining these in two large cohorts, Ludwigshafen Risk and Cardiovascular Health study (LURIC; 34% female, mean age 63.0 years) and Avon Longitudinal Study of Parents and Children study (ALSPAC) mothers (mean age 48.1 years). Together these provided 5069 participants with complete data. Relationships between sclerostin and CVD risk factors were meta‐analyzed, adjusted for age, sex (LURIC), body mass index, smoking, social deprivation, and ethnicity (ALSPAC). Higher sclerostin levels were associated with higher risk of diabetes mellitus (DM) (odds ratio [OR] = 1.25; 95% confidence interval [CI] 1.12, 1.37), risk of elevated fasting glucose (OR 1.15; CI 1.04, 1.26), and triglyceride levels (ÎČ 0.03; CI 0.00, 0.06). Conversely, higher sclerostin was associated with lower estimated glomerular filtration rate (eGFR) (ÎČ âˆ’0.20; CI −0.38, −0.02), HDL cholesterol (ÎČ âˆ’0.05; CI −0.10, −0.01), and apolipoprotein A‐I (ÎČ âˆ’0.05; CI −0.08, −0.02) (difference in mean SD per SD increase in sclerostin, with 95% CI). In LURIC, higher sclerostin was associated with an increased risk of death from cardiac disease during follow‐up (hazard ratio [HR] = 1.13; 1.03, 1.23) and with severity of coronary artery disease on angiogram as reflected by Friesinger score (0.05; 0.01, 0.09). Associations with cardiac mortality and coronary artery severity were partially attenuated after adjustment for risk factors potentially related to sclerostin, namely LDL and HDL cholesterol, log triglycerides, DM, hypertension, eGFR, and apolipoprotein A‐I. Contrary to trial evidence suggesting sclerostin inhibition leads to an increased risk of CVD, sclerostin levels appear to be positively associated with coronary artery disease severity and mortality, partly explained by a relationship between higher sclerostin levels and major CVD risk factors. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)

    Small sinking particles control anammox rates in the Peruvian oxygen minimum zone

    Get PDF
    Anaerobic oxidation of ammonium (anammox) in oxygen minimum zones (OMZs) is a major pathway of oceanic nitrogen loss. Ammonium released from sinking particles has been suggested to fuel this process. During cruises to the Peruvian OMZ in April–June 2017 we found that anammox rates are strongly correlated with the volume of small particles (128–512 ”m), even though anammox bacteria were not directly associated with particles. This suggests that the relationship between anammox rates and particles is related to the ammonium released from particles by remineralization. To investigate this, ammonium release from particles was modelled and theoretical encounters of free-living anammox bacteria with ammonium in the particle boundary layer were calculated. These results indicated that small sinking particles could be responsible for ~75% of ammonium release in anoxic waters and that free-living anammox bacteria frequently encounter ammonium in the vicinity of smaller particles. This indicates a so far underestimated role of abundant, slow-sinking small particles in controlling oceanic nutrient budgets, and furthermore implies that observations of the volume of small particles could be used to estimate N-loss across large areas

    Three decades of advancements in osteoarthritis research: insights from transcriptomic, proteomic, and metabolomic studies.

    Get PDF
    Osteoarthritis (OA) is a complex disease involving contributions from both local joint tissues and systemic sources. Patient characteristics, encompassing sociodemographic and clinical variables, are intricately linked with OA rendering its understanding challenging. Technological advancements have allowed for a comprehensive analysis of transcripts, proteomes and metabolomes in OA tissues/fluids through omic analyses. The objective of this review is to highlight the advancements achieved by omic studies in enhancing our understanding of OA pathogenesis over the last three decades. We conducted an extensive literature search focusing on transcriptomics, proteomics and metabolomics within the context of OA. Specifically, we explore how these technologies have identified individual transcripts, proteins, and metabolites, as well as distinctive endotype signatures from various body tissues or fluids of OA patients, including insights at the single-cell level, to advance our understanding of this highly complex disease. Omic studies reveal the description of numerous individual molecules and molecular patterns within OA-associated tissues and fluids. This includes the identification of specific cell (sub)types and associated pathways that contribute to disease mechanisms. However, there remains a necessity to further advance these technologies to delineate the spatial organization of cellular subtypes and molecular patterns within OA-afflicted tissues. Leveraging a multi-omics approach that integrates datasets from diverse molecular detection technologies, combined with patients' clinical and sociodemographic features, and molecular and regulatory networks, holds promise for identifying unique patient endophenotypes. This holistic approach can illuminate the heterogeneity among OA patients and, in turn, facilitate the development of tailored therapeutic interventions

    Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments

    Get PDF
    Burial of organic material in marine sediments represents a dominant natural mechanism of long-term carbon sequestration globally, but critical aspects of this carbon sink remain unresolved. Investigation of surface sediments led to the proposition that on average 10-20% of sedimentary organic carbon is stabilised and physically protected against microbial degradation through binding to reactive metal (e.g. iron and manganese) oxides. Here we examine the long-term efficiency of this rusty carbon sink by analysing the chemical composition of sediments and pore waters from four locations in the Barents Sea. Our findings show that the carbon-iron coupling persists below the uppermost, oxygenated sediment layer over thousands of years. We further propose that authigenic coprecipitation is not the dominant factor of the carbon-iron bounding in these Arctic shelf sediments and that a substantial fraction of the organic carbon is already bound to reactive iron prior deposition on the seafloor
    • 

    corecore