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s u m m a r y

Objective: Osteoarthritis (OA) is a complex disease involving contributions from both local joint tissues and 
systemic sources. Patient characteristics, encompassing sociodemographic and clinical variables, are intri-
cately linked with OA rendering its understanding challenging. Technological advancements have allowed 
for a comprehensive analysis of transcripts, proteomes and metabolomes in OA tissues/fluids through omic 
analyses. The objective of this review is to highlight the advancements achieved by omic studies in en-
hancing our understanding of OA pathogenesis over the last three decades.
Design: We conducted an extensive literature search focusing on transcriptomics, proteomics and metabolomics 
within the context of OA. Specifically, we explore how these technologies have identified individual transcripts, 
proteins, and metabolites, as well as distinctive endotype signatures from various body tissues or fluids of OA 
patients, including insights at the single-cell level, to advance our understanding of this highly complex disease.
Results: Omic studies reveal the description of numerous individual molecules and molecular patterns 
within OA-associated tissues and fluids. This includes the identification of specific cell (sub)types and as-
sociated pathways that contribute to disease mechanisms. However, there remains a necessity to further 
advance these technologies to delineate the spatial organization of cellular subtypes and molecular patterns 
within OA-afflicted tissues.
Conclusions: Leveraging a multi-omics approach that integrates datasets from diverse molecular detection 
technologies, combined with patients’ clinical and sociodemographic features, and molecular and regulatory 
networks, holds promise for identifying unique patient endophenotypes. This holistic approach can illuminate the 
heterogeneity among OA patients and, in turn, facilitate the development of tailored therapeutic interventions.
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Introduction

Osteoarthritis (OA) is characterized by pain and reduced function, 
involving both local joint and systemic tissues and fluids. Various 
sociodemographic and clinical factors are associated with incidence 
and progression of OA.1,2 These sociodemographic (e.g., age, sex, BMI 
etc.) and clinical factors (e.g., chronic pain, comorbidities such as 
metabolic disorders, inflammation, malalignment etc.) refer to some 
phenotypes of OA. Studies have described multiple OA phenotypes, 
with contributions of these components.3,4 Individual patient char-
acteristics can also modify systemic molecular profiles,5 contributing 
to OA. OA endotypes are defined by molecular signatures and asso-
ciated mechanisms that underly disease pathologies. For instance, 
low tissue turnover, structural damage, and systemic inflammation 
endotypes were identified from biochemical markers in urine and 
serum using two prospective cohorts of patients with OA, with some 
differences in the proportions of subjects with pain and structural 
progression between endotype groups.6 However, all groups had 
progressors and non-progressors regardless of group, suggesting the 
biochemical marker endotypes identified are only part of the puzzle. 
A deeper understanding OA endotypes has recently become a major 
focus to uncover new targets and disease-associated mechanisms. 
This is achieved through advanced omic technologies, including 
transcriptomics, proteomics, and metabolomics. Combining en-
dotypes uncovered from these advanced approaches with OA patient 
phenotypes may help to uncover distinct endotype-phenotype 
combinations (endophenotypes) to disentangle OA disease hetero-
geneity.

Transcriptomics analyzes transcripts expressed from the 
genome.7 Proteomics, conceived in 1994,8 is the large-scale analysis 
of proteins, including their identification, quantification, post- 
translational modifications (PTMs), localization, and degradation. 
Metabolites are the reactants and products of biochemical reactions 
mediated by proteins. Metabolomics, defined in 1998,9 involves the 
characterization of thousands of metabolites.10

Over the past 30-plus years, advancements in transcriptomics, 
proteomics, and metabolomics technologies have provided insight 
into molecular changes occurring in OA tissues and fluids. In this 
review, we highlight how these omic technologies have contributed 
to our biological understanding of OA. We also discuss how spatial- 
omics could aid in better understanding OA at the tissue level, and 
how multi-omics approaches can help define OA populations by 
both endotype and phenotype, unraveling the complex hetero-
geneity observed in individuals with OA.

Transcriptomics

The field of OA has greatly benefited from high-throughput 
transcriptomic tools (Fig. 1). Advancements in microarray technol-
ogies, followed by progressive improvements to high-throughput 
sequencing methods, including “bulk” RNA-sequencing (RNA-seq) 
and single cell (sc)RNA-seq, have led to deeper understanding OA 
pathophysiology at the tissue, cell, and molecular level. Here, we 
emphasize the application of transcriptomics in different joint tis-
sues affected by this disease.

Cartilage

In adult articular cartilage tissue, the sole cell type found are 
chondrocytes that are organized into zones where they have distinct 
functions to maintain tissue homeostasis and extracellular matrix 
(ECM) turnover. During OA, there is a shift from homeostasis to 
catabolism, resulting in cartilage degeneration and loss of chon-
drocytes.

Early OA studies using DNA array technology focused on disease 
mechanisms including involvement of matrix metalloproteinases or 
the imbalance between anabolic and catabolic processes by com-
paring unaffected and OA-damaged cartilage.11 More comprehensive 
microarray studies in the early 2000s reported significant differ-
ences in differentially expressed genes related to cell proliferation, 
collagen synthesis, and ECM degradation when comparing intact and 
damaged cartilage,12 and differentiated between different grades of 
OA cartilage specimens demonstrating the potential implication of 
increased oxidative stress and cell damage in OA chondrocytes.13

Following studies tried to tackle specific experimental challenges 
using genome-wide microarrays and different specimen compar-
isons.14–16 As a result, the list of pathologically relevant candidate 
genes was extended, including genes involved in bone formation and 
skeletal development.

Since human repair phenotypes are inaccessible and clinical 
samples are limited for analysis, animal models provide a great 
opportunity to uncover additional genes and signaling pathways 
that are regulated at the transcriptional level during early OA. 
Appleton et al. performed one of the first studies investigating 
transcriptional changes in chondrocytes using a surgically induced 
rat OA model17 and identified chemokines, such as Cxcr4 and Ccl2, 
with implications in progressing and early degrading cartilage, re-
spectively. Studies in mice undergoing destabilization of the medial 
meniscus (DMM) surgery to induce OA, aimed to delineate the 
evolution of changes in chondrocyte gene expression during early 
disease, focusing on different time-points,18,19 and dissect the role of 
previously identified central genes (such as ADAMTS5) and aging.20

These preclinical studies had a crucial role in characterizing the 
complex pathogenesis of OA cartilage degradation, which is acti-
vated upon first disease induction.

It has been proposed to enrich the current, more clinical ap-
proaches towards phenotyping to include molecular endotypes de-
rived from omic technology data.21 Fernández-Tajes et al. found in 
cartilage microarray data from 23 patients two endotypes with gene 
expression differences related to inflammatory response,22 while 
Soul et al. identified two endotypes in RNA-seq data from 44 pa-
tients, but with differences related to oxidative stress, innate im-
mune responses and Wnt signaling.23 Steinberg et al. reported 
comparable observations with two endotypes (including inflamma-
tion).24 Yuan et al. identified four patient endotypes when com-
bining different tissues, underlining the importance of OA as a 
“whole joint disease.”25 Future studies will leverage advanced 
computational methods and machine learning to characterize tran-
scriptomic endotypes and their correlation with clinical phenotypes.

The first scRNA-seq study on human OA cartilage was published 
in 2018, providing evidence for seven molecularly-specific sub-
populations and transient states of chondrocytes, as well as novel 
functional phenotypes with regulatory functions including im-
munomodulation.26 The dataset further allowed identification of 
cartilage progenitor cells (CPCs) that express stem cell-related sur-
face markers. Following studies partly confirmed these initial find-
ings and integrated synovial tissue/cells in the analysis to dissect 
synovial cell-chondrocyte crosstalk mechanisms.27 These cell po-
pulation-based studies uncovered subordinate disease mechanisms 
that have been submerged in RNA-seq gene expression studies, such 
as ferroptosis.28 One of the first studies published applying scRNA- 
seq to animal models was conducted, demonstrating that most cell 
clusters described in humans are also present in mouse knee carti-
lage.29 A recent methodological approach combined RNA-seq with 
scRNA-seq, which generated a high confidence (pure) chondrocyte 
gene signature by avoiding cross-contamination from other tissues, a 
process necessary in smaller animal models with limited tissue 
availability.30 These advancements have led to a deeper under-
standing of molecularly defined chondrocyte subtypes, including the 
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differentiation between pre-hypertrophic and hypertrophic chon-
drocytes, and the definition of CPCs, with more recent studies 
shedding light into synovial-chondrocyte cell interactions and im-
mune cell involvement in OA cartilage degradation.

Synovium
The synovium is the inner lining of joints. Composed of a hetero-

geneous population of stromal cells, immune cells, adipocytes, and 
nerve-, blood vessel-, and lymphatic vessel-associated cells, the syno-
vium undergoes dynamic cellular and molecular changes during OA 
progression.31

Early microarray studies of rodent and human OA synovium revealed 
a signature of fibroblastic and myeloid enrichment, with regulated genes 
involved in TGF-β signaling, collagen synthesis and cross-linking, and 
innate immunity.32 Relevant to fibrosis, Remst et al. found that PLOD2, 
LOX, COL1A1, COL5A1, and TIMP1 were increased in end-stage human OA 
synovial tissue and TGF-β-stimulated human OA synovial fibroblasts.32

Lambert et al. analyzed human end-stage OA synovium by microarray of 
normal vs inflamed regions within the same subjects.33 Inflamed sy-
novial regions overexpressed select cytokines, chemokines, various en-
zymes, catabolic proteases, and markers of angiogenesis. This was 
among the first studies to demonstrate anatomic region-dependent 
variability in the transcriptome of OA synovium. Microarray analysis of 

cultured synovial fibroblasts from end-stage OA, compared to healthy 
and end-stage RA synovial tissue, showed that OA fibroblasts exhibited 
enriched genes related to cell adhesion and actin cytoskeleton, small 
GTPases and GTPase signal transduction, and neurotrophic mediators, 
further solidifying the more fibrotic nature of OA synovium.34 Micro-
array studies were instrumental in revealing the synovial gene expres-
sion signatures of OA, marked by abundant adaptive immune-related 
and pro-fibrotic processes.

The advent of RNA-seq facilitated deeper identification of specific 
signaling pathways active in the OA synovium. Steinberg et al. per-
formed RNA-seq analysis of synovium from 113 OA patients and iden-
tified two synovial endotypes: one characterized by inflammatory genes 
and one by ECM- and cell adhesion-related genes.35 It is unclear whether 
these endotypes are simply different disease states (e.g., patients with 
active inflammatory flares) or truly reflect different pathomechanisms. 
To study the contribution of beneficial (i.e., exercise) and detrimental 
(i.e., injury and fibrosis) mechanical loading experienced by synovium, 
Philpott et al. subjected human late-stage OA synovial tissue to low- 
frequency or high-frequency tensile strain, followed by RNA-seq.36 Low- 
frequency loading enriched for pathways reglated to deinterferon- 
gamma and -alpha responses, Fc receptor signaling, and lysosomal 
routing, proposed as protective immunomodulatory and inflammation- 
resolving functions. Conversely, high-frequency loading activated 

Fig. 1                                                                                                         

Transcriptomics – technological advancements and application to OA. Transcriptomics has evolved over time from the advent of SAGE se-
quencing and microarrays to include high-throughput sequencing techniques. Combining sequencing technology with microarray and imaging 
has also allowed for the development of spatial transcriptomics. Transcriptomics has advanced the field of OA by enhancing our understanding 
of tissue-specific and inter-tissue cross-talk, determination of key genes associated with OA, uncovering transcriptomic endotypes, and 
identifying joint cell heterogeneity.
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pathways related to NOD-like receptor signaling and redox stress, in-
creased lactate release, and promoted 3-nitrotyrosine formation, which 
are detrimental to synovium as they induce synovial inflammation. 
Further studies are needed to describe mechanoreceptors and in-
tracellular signaling responsible for synovium mechanosensitivity.

To study macrophage phenotypes in arthritis, flow-sorted syno-
vial tissue-derived macrophages from OA and inflammatory arthritis 
(RA or psoriatic arthritis) were analyzed by RNA-seq.37 Two distinct 
subgroups of OA macrophages were identified, underpinned by 155 
differentially-expressed genes: a “classical OA” subset and an “in-
flammatory-like OA” subset more similar to macrophages from in-
flammatory arthritis. The inflammatory-like subset was enriched in 
pro-inflammatory signaling and cell-cycle genes, which was func-
tionally confirmed by flow cytometry, demonstrating that synovial 
tissue from these patients had a ∼2.5-fold greater number of mac-
rophages. Using a model of anterior cruciate ligament (ACL) rupture 
in mice, Bergman et al. described divergence of synovial tran-
scriptomes between male and female mice associated with greater 
progression of post-traumatic OA severity, pain behavior, ma-
trixmetalloproteinase activity, and osteophyte formation in male 
mice.38 Male mice had increased expression of pro-fibrotic, neu-
roangiogenic, and extracellular signal-regulated kinase signaling 
genes, indicating that synovitis may be a key driver of the well- 
documented greater OA severity in male mice across OA models.

One of the first scRNA-seq datasets of OA synovium was pub-
lished in 2018, which included characterization of synovial fibro-
blasts from OA and RA patients.39 From 337 fibroblasts from two OA 
and two RA patients, this study identified three primary synovial 
fibroblast groups: 1) A CD34(-), Thy1(-) population, now recognized 
as PRG4High, CLIC5+ lining/intimal fibroblasts; 2) A CD34(-) Thy1(+) 
population localized to the sublining/subintima near blood vessels, 
and 3) a CD34(+) Thy1(+), now recognized to represent progenitor- 
like DPP4+/PI16+ “universal fibroblasts.”40 The first whole-synovium 
OA atlas was published by Chou et al. in 2020 and comprised 
∼10,600 synovial cells from three OA patients.41 Major synovial cell 
types were identified and characterized by top differentially ex-
pressed genes: lining fibroblasts, sublining fibroblasts, smooth 
muscle cells, endothelial cells, mast cells, T cells, macrophages, 
dendritic cells, and B cells. This study also constructed a model of 
synovial-cartilage crosstalk using ligand-receptor expression pat-
terns, demonstrating that synovium is the primary contributor of 
cytokines and chemokines whereas cartilage is responsible for 
growth factor and morphogen production.

To understand cellular sources of neurotrophic mediators re-
sponsible for OA pain, Nanus et al. demonstrated that OA synovial 
tissue from sites of joint pain are enriched in synovial fibroblasts 
expressing neurotrophic mediators, compared to sites with lesser 
pain.42 In end-stage OA patients, these fibroblasts expressed genes 
related to eicosanoid signaling, prostanoid biosynthesis, and insulin 
growth factor-1 (IGF-1) signaling, all recognized to mediate noci-
ceptive sprouting and pain perception. In early OA painful synovial 
sites, fibroblasts also expressed genes related to IGF-1 and eicosa-
noid signaling. Thus, local enrichment of nociceptive nerve fibers 
giving rise to region-dependent pain signatures is likely driven, in- 
part, by distinct synovial fibroblast subsets. Defining the molecular 
regulation of these fibroblasts could produce novel OA pain ther-
apeutics targeting these cells.

To describe the emergence of post-traumatic OA-associated sy-
novial fibroblasts, Knights et al. performed scRNA-seq of murine 
synovium following noninvasive ACL rupture.43 Seven synovial fi-
broblast subsets were described, including a Prg4High lining fibro-
blast, which overexpressed the Wnt agonist R-spondin 2 following 
injury, and four sublining fibroblast populations with unique mole-
cular programs. Among the sublining populations was a Dpp4+/Pi16+ 
stromal progenitor, consistent with the “universal fibroblast.”40

Differentiation trajectory analysis suggested this population gave 
rise to Acta2/αSMA+ myofibroblasts that further transitioned into 
Prg4High lining fibroblasts, underpinning synovial lining hyperplasia. 
Sox5 was identified as a molecular regulator of Dpp4+ progenitor- 
derived lining fibroblasts and R-spondin 2 expression. Subsequent 
work using a cartilage injury model further demonstrated that 
Dpp4+/Pi16+ synovial progenitors were derived from the Gdf5- 
lineage joint interzone, giving rise to Prg4-expressing lining fibro-
blasts, with Sox5, Foxo1, and Creb5 predicted as transcription factors 
underpinning lining fibroblast fate.44

Robust descriptions of OA synovial immune phenotypes and their 
origins are still lacking, which remain challenging given the in-
complete understanding of genes unique to synovial immune cells, 
absence of lineage-tracing models that do not overlap between re-
sident and systemically-derived cells, and the short half-life of many 
immune cells.

Subchondral bone
Subchondral bone refers to cortical, trabecular and marrow adipose 

tissue (BMAT) compartments beneath articular cartilage. Advanced OA 
stages display substantial thickening of the subchondral cortical plate 
and trabeculae. Changes in the composition of BMAT, referred to as bone 
marrow lesions (BMLs) are associated with pain and cartilage volume 
loss. First insights from histopathological studies showed blood vessels 
and nerves invade the subchondral cortical plate during OA, and there is 
an elevated presence of macrophages, vascular structures, and osteo-
clasts in BMAT.45–49

Initial transcriptomic investigations into human OA subchondral 
bone and BMLs were conducted during the early to mid-2000s, utilizing 
microarray technology.50–52 A landmark study comparing osteoporotic 
and OA femoral heads yielded initial molecular evidence for increased 
expression of pro-angiogenic genes within OA subchondral bone.50

Functional analyses unveiled enrichment of pathways related to angio-
genesis, collagen fibrils, and cell proliferation between sclerotic and non- 
sclerotic tibial plateaus.53 A similar approach comparing knee tibia BMLs 
to controls identified angiogenesis, cytokine signaling, PDGF and Wnt 
signaling pathway enrichment.52 Among the potential molecular targets 
suggested by these studies, STMN2, IL11 and CHADL were confirmed 
recently using RNA-Seq.54

Advancements in bioinformatic tools have helped to start unravel 
cellular and molecular mechanisms driving tissue remodeling in OA. 
Ligand-receptor mapping of cartilage and subchondral bone RNA- 
seq profiles inferred increased angiogenesis and ECM remodeling 
pathway molecular crosstalk.25 However, the diverse array of cell 
types present in subchondral bone, including osteocytes, adipocytes, 
osteoblasts, osteoclasts, vascular cells, immune cells, and progenitor 
cells in BMAT, continues to present significant challenges in inter-
preting bulk transcriptomics data. Notably, a preliminary study uti-
lizing scRNA-seq indicated the existence of at least 10 distinct 
molecular cell types within BMAT.55

The size of murine joints is a major constraint to study sub-
chondral bone in models of OA, thus transcriptomic analyses were 
usually conducted using intact cartilage and bone,56 entire bones,57

or larger animal models.58 Analysis of temporal gene expression 
profiles following surgical induction of OA revealed upregulation of 
osteoclast-related genes at early stages, followed by induction of 
osteoblast-related genes at later stages.58 Furthermore, tran-
scriptomic analysis of aging bone lacking BMAT revealed differential 
expression of several genes associated with human hip or knee OA, 
such as COL27A1, COL2A1 and COL11A1.57

Expanding upon the foundation laid by current transcriptomic 
datasets, further investigations using proteomics59–61 and lipidomics 
of subchondral bone will open new avenues for disease endotyping, 
biomarker discovery and development of novel therapeutic targets.
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Meniscus
Within OA-affected menisci, there are indications of gross and 

histologic pathology, characterized by increased water, proteoglycan, 
and collagen content, and elevated expression of MMP13.62 In a 
significant advancement, Brophy et al. performed RNA-seq analysis 
on meniscus tissue, demonstrating that menisci of OA-afflicted 
joints exhibit an inflammatory phenotype, contrary to menisci from 
non-OA joints, which display a repair-oriented phenotype.63 In ad-
dition, this analysis revealed the involvement of epigenetically 
regulated histone deacetylation in meniscus tears as well as the 
expression of lncRNAs. A subsequent investigation elucidated key 
biological processes (inflammation, chemotaxis, cytokine-to-cyto-
kine interaction) in the context of OA-related meniscus de-
gradation.64

Subsequently, a pioneering scRNA-seq study of human meniscus 
identified cellular heterogeneity and changes in the proportions of 
cell clusters based on disease status. In the context of healthy me-
nisci, five empirically defined cell populations and two novel cell 
clusters were identified. In stark contrast, OA degenerated menisci 
revealed four cell clusters, with one being distinctive due to its 
progenitor cell characteristics.65 In-depth analyses clarified the cel-
lular composition of the meniscus and the precise manners in which 
specific cell clusters partake in both development and degenerative 
processes. For instance, gene transcripts representative of meniscus 
degeneration (GAS1, RAB3B and CD318) were highly expressed in a 
unique cell cluster. The peak expression of these genes coincided 
with advanced stages of meniscus cell differentiation, highlighting 
an aberrant cellular degenerative response, shedding light on po-
tential mechanisms driving meniscus degeneration and its associa-
tion with OA progression.

Thus, scRNA-seq data augmented our understanding of the spa-
tiotemporal landscape of meniscus gene expression and furnished 

additional insights into degenerative mechanisms, cellular compo-
sitions, and biological links between meniscus tear and OA. Moving 
forward, investigations that continue this trajectory hold promise to 
uncover rare meniscus cell subpopulations and improve our under-
standing of cell-cell interactions within the microenvironment of 
this clinically-critical tissue and its participation in OA genesis.

Proteomics

Proteomic analyses in OA started in ∼2004, yet studies were con-
strained by technical limitations, especially regarding sensitivity and 
throughput (Fig. 2). The first proteomic study of osteoarthritic chon-
drocytes was performed by two-dimensional gel electrophoresis.66 Since 
then, strategies using nano-liquid chromatography-mass spectrometry 
(LC-MS)/MS are most common. By these means, shotgun proteomics 
studies have elucidated the molecular composition of articular cartilage 
and other joint tissues. One of the most exhaustive works in this area 
characterized the different layers of cartilage from healthy or OA hip and 
knee tissues,67 identifying more unique proteins in the superficial layer 
than in the deep one, such as gelsolin, tenascins or lubricin. This study 
also showed differences in protein abundance related with the disease 
state (i.e., decrease of COMP or clusterin) or joint site (i.e., aggrecan core 
protein or matrilin-3 enriched in hip cartilage, while Chitinase-3-like 
protein 1 or MMP1 increased in the knee tissue). Most recently, cutting- 
edge technology combining cytometry with mass spectrometry (mass 
cytometry) allowed single-cell proteomic analyses in cartilage. A panel of 
33 markers was developed for profiling chondrocytes by Cytometry by 
Time of Flight (CyTOF), which was employed to establish a single-cell 
atlas for cartilage and revealed “rare” cell populations in the OA tissue.68

This technology has been subsequently used to map the effects of two 
DMOAD candidates on chondrocytes isolated from patients with end- 
stage OA.69 Altogether, single-cell proteomic analysis has shown a great 

Fig. 2                                                                                                         

Proteomics – technological advancements and applications to OA. Proteomics was originally defined in 1994. Technologies have evolved and 
include mass spectrometry- and affinity-based techniques for high-throughput, targeted, and single cell proteomics. Beginning in 2004, pro-
teomics research in OA has been used to study protein levels, key enriched pathways, and patient endotypes from multiple joint tissues and 
synovial fluid.

M.F. Rai et al. / Osteoarthritis and Cartilage 32 (2024) 385–397 389



potential for patient stratification in OA, which may be critical in de-
termining precision medicine approaches.

Other proteomic studies focused exclusively on proteins released 
(secretome) by articular chondrocytes and cartilage. One of the first 
works following this reasoning used an in vitro model of bovine 
cartilage explants to analyze proteins released in response to treat-
ment with IL-1β, TNF-α, or mechanical compression.70 The cytokine 
treatment caused a decrease in the synthesis of collagen subunits, 
and increased release of aggrecan and proteins related to innate 
immunity, while mechanical compression particularly enhanced the 
release of intracellular proteins. In another study, secretomes of le-
sioned and non-lesioned OA human cartilage, and healthy tissue, 
were compared leading to the identification of proteins distinctively 
released, such as osteoprotegerin and periostin.71 Synovial fluid and 
serum from OA patients have also been analyzed by LC-MS/MS in 
proteomics as ideal sources for OA biomarkers. The first in-depth 
study of the OA synovial fluid proteome was published in 2014.72

Thereafter, several papers searched this proteome to find markers of 
early OA.73 A recent study defined a panel of 15 serum proteomic 
markers to predict OA progression,74 including peptides from carti-
lage acidic protein 1 (CRTAC1), vitamin D binding protein and the 
complement C1r subcomponent.

Global analysis of specific PTMs has also been explored in OA 
research. A N-glycome analysis of OA chondrocytes and synovio-
cytes described an increased binding of galectins due to glyco-
protein modifications, which induced proinflammatory markers.75

Another study compared changes in N-glycosylated protein 
abundance in OA cartilage and controls with traumatic joint injury, 
identifying 22 N-glycosylated peptides that were increased in the 
diseased tissues.76 In another work, Dong and colleagues per-
formed a phosphoproteomic analysis comparing lesioned vs con-
trol OA cartilages, identifying > 4000 differential phosphorylated 
peptides and illustrating alteration of kinase hubs and transduc-
tion pathways in OA.77

Notably, ECM protein degradation studies have also been in the 
spotlight of proteomics. Progression of matrix degradation in re-
sponse to mechanical damage and cytokine treatment in human 
tissues was explored by targeted proteomics to measure certain 
protein domains of collagen, aggrecan and COMP.78 A further study 
carried out an analysis of endogenous peptides released from 
human OA cartilage, identifying specific peptides from prolargin 
and clusterin that were differentially released from OA knee and 
hip tissues, respectively, compared to healthy.79 Finally, recent 
papers in this area described the massive proteolytic events that 
take place in OA cartilage, delineating the role of specific proteases 
such as HtrA1.80

Affinity proteomics studies have also been carried out for the dis-
covery or OA biomarkers in body fluids. Novel, large-scale affinity 
proteomics platforms have been developed to facilitate biomarker 
discovery and risk prediction, including the aptamer-based SomaScan 
platform (SomaLogic, Boulder, CO) and the proximity extension assay 
developed by Olink (Uppsala, Sweden). Using SomaScan, 4792 proteins 
were measured in plasma of > 37,000 individuals to search for potential 
protein biomarkers of hip, knee, and/or hand OA, and identify bio-
markers for joint replacement.81 CRTAC1 was found to be the most 
promising candidate biomarker for OA incidence and was predictive of 
progression to joint replacement. In two recent studies using the Olink 
platform, CRTAC1 was also strongly associated with OA severity and 
progression in a screening of Rotterdam study participants,82 with its 
predictive nature validated in a study on > 54,000 individuals from the 
UK Biobank.83

Technological advances in affinity proteomics and CyTOF plat-
forms, along with the exceptional capacity of LC-MS/MS to identify 
protein fragments and modifications with increasing sensitivity and 
speed, demonstrates that after 20 years of research, proteomics has 

reached a high level of maturity in the OA field that turns it into the 
best tool for large-scale functional research in OA.

Metabolomics

The first reports of metabolomics in OA used nuclear magnetic 
resonance (NMR)-based metabolomics and meniscectomized guinea 
pigs.84 NMR also characterized synovial fluid from various joint 
diseases, finding similarity between metabolomic profiles from OA, 
RA, crystal-associated arthritis, and spondylarthritis compared to 
septic arthritis.85 NMR-based metabolomic profiling of urine dis-
tinguished progressors from non-progressors, finding key dis-
criminatory roles for N-N-dimethylglycine, hippurate, histidine, and 
trigonelline at 18 months.86 Several studies used MS to study me-
tabolites in OA. The first MS-based metabolomics study targeted 163 
metabolites in serum of knee OA subjects and controls, finding ratios 
of valine to histidine and xleucine (both leucine and iso-leucine) to 
histidine significantly different between the groups.87 In infra-
patellar fat pad, lipoxin A4, thromboxane B2, and arachidonic acid 
were key metabolites separating OA from normal tissue by di-
mensionality reduction.88

Metabolomic profiling can analyze OA cultured samples and 
conditioned media. 13-C labeling of carbon sources showed that OA 
chondrocytes use the tricarboxylic acid cycle, and patient-matched 
chondrocytes from OA regions produce more lactate than those from 
macroscopically normal cartilage.89 Untargeted metabolomic pro-
filing found extracellular stiffness impacts OA chondrocyte me-
chanotransduction,90 suggesting that decreased pericellular matrix 
stiffness may affect OA pathophysiology. In vivo studies support 
metabolic changes as altered joint mechanotransduction. For ex-
ample, a single night of wheel exercise induced multiple pathways 
including amino acid metabolism and synthesis of catecholamines 
and ubiquinol.91 Six months of exercise resulted in increased con-
nectivity between local joint-level structural and pathological 
measures and synovial fluid metabolites.92 Germ-free mice had de-
creased variability in synovial fluid metabolomic profiles compared 
to conventional mice, and in response to joint injury, with meta-
bolite differences related to inflammation and innate immunity.93

Isotopic labeling in a rat injury model identified potential plasma 
metabolite biomarkers 2-aminoadipic acid, GABA, and sacchar-
opine.94 Rats subjected to either high-fat diet or surgical cartilage 
damage exhibited differences in multiple oxylipins in plasma and 
synovial fluid.95 These in vitro and in vivo studies show that meta-
bolomic profiling provides deep insight into OA pathologies, iden-
tifies novel disease mechanisms, and finds potential drug targets.

Metabolomic profiling of clinical samples provides detailed in-
sight into the molecular nature of OA. Metabolomic profiles of sy-
novial fluid discriminated between early- and late-stage OA KL 
grades.96 Similarly, analysis of post-mortem synovial fluid found 
distinct endotypes within both early- and late-stage OA.97 Additional 
endotypes were discovered by clustering analysis of targeted me-
tabolomic profiles from plasma of OA patients and normal con-
trols.98 Targeted metabolomic profiling found endotypes within a 
population of late-stage (KL grades 3–4) OA patients, with key me-
tabolites related to tRNA acylation and B-vitamin metabolism.99

Targeted metabolomic profiling of plasma from total joint replace-
ment patients found ratios of acetycholine to phosphatidylcholine 
and phosphatidylcholine-diacyl-C36:4 to isoleucine were associated 
with post-replacement pain.100 1H NMR metabolomics found dif-
ferences in profiles between inflammatory and fibrotic synovial tis-
sues, as well as correlations between some metabolites detected 
between synovium and synovial fluid.101 As technology and bio-
banks of OA tissues and fluids improve, opportunities to advance 
human OA research using metabolomic profiling will emerge.
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A major challenge of metabolomics is variability (owing in part to 
dietary and environmental factors) that is hard to control in clinical 
studies, complicating interpretation of how metabolomic profiles 
relate to fundamental biology of OA. However, when profiled se-
quentially in time, metabolite data can provide bona fide information 
for enzymatic activity across multiple pathways simultaneously. 
Therapeutic interventions can be evaluated through changes in 
metabolites and metabolomic profiling, which has potential to 
provide insight into disease endotypes to improve our knowledge of 
OA and move toward improved clinical treatments.

Spatial-omics

While it has been long appreciated that the articular joint is an 
organ system,102 it has been challenging to decode the factors that 
govern inter-tissue and inter-organ crosstalk (factors outside of the 

joint organ system that may signal to the joint).103 Current spatial 
transcriptomics techniques produce unique molecular identifiers 
(UMIs) in a capture radius of ∼55 µm, and approaches have been 
developed to identify putative cell-cell communication data [e.g., 
communication analysis by optimal transport]104 (Fig. 3). Given the 
relatively recent development of spatial-omics approaches, we will 
briefly highlight how these technologies have been applied to OA 
and other rheumatic diseases to illustrate potential utility of these 
techniques.

While approaches have been established to assess the spatial 
immune cell milieu, they have yet to be used in the OA context, 
despite established protocols for formalin fixed, paraffin embedded 
and frozen tissues.105 In psoriatic arthritis, spatial transcriptomics 
was used to identify molecular signatures that separate early and 
severe disease states.106 Synovial biopsies from RA patients were 
evaluated using spatial transcriptomics to identify changes in B cells 

Fig. 3                                                                                                         

Spatial transcriptomics pipeline. Fixed or frozen tissue is embedded in paraffin or OCT as required by the specific protocol (1). Next, using a kit 
from 10×, nanostring, or others, the tissue is prepared, for example, by removing paraffin using xylenes, dried, and typically kept cold until the 
assay is performed. The same slide or serial slide is used for staining by hematoxylin and eosin which will later be used to resolve spatial 
information with sequencing data. The tissue is transferred to a barcoded slide using protocols and kits provided by manufacturers (2). The 
barcoded slide is imaged and either the full genome or a limited dataset is sequenced, pending which spatial technique is selected (3). Then, 
gene expression data are generated (4), and data is analyzed and processed (5) to determine whole section and tissue specific changes in gene 
expression (6).
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concordant with alterations in tissue architecture, helping disen-
tangle whether plasma cells are present before or after tissue re-
modeling.107

Spatial metabolomic information can also be observed using 
matrix-assisted laser desorption ionization (MALDI)-MS imaging. 
Rocha and colleagues used this approach to characterize lipodomic 
profiles of synovial tissues in OA vs. RA and psoriatic arthritis. This 
approach yielded characteristic lipidomic profiles from OA patients 
that may help identify pathophysiological mechanisms in OA.108

MALDI-MS images have been integrated with label-free proteomics 
to illustrate that OA cartilage of subjects with and without type 2 
diabetes have differential lipid and protein profiles.109 For example, 
these spatial analyses revealed that patients with type 2 diabetes 
who were OA negative had more phosphatidylcholine and sphin-
gomyelin species, compared to patients with type 2 diabetes and OA 
who had more lysolipids.109 This observation confirms that phos-
phatidylcholine and sphingomyelin species are key elements of 
healthy cartilage.109 Furthermore, phospholipid content differed in 
superficial and deep zones of cartilage, which would have not been 
detectable without these spatial analyses. Opportunities to assess 
spatial proteomics in OA have been reviewed elsewhere.110 As 
emerging approaches reach single-cell resolutions (UMIs of 
5–10 µm) and are capable of multi-omic measures, we are uniquely 

positioned to integrate these technologies to overcome the lack of 
spatial information in musculoskeletal crosstalk research as ex-
emplified by the methods showcasing single cell-resolution tran-
scriptomic information utilizing image-seq.111

Researchers have delineated roadmaps for building cell atlases 
involving single and spatial multi-omic assessments, which outline a 
vision and strategic direction for investigation as these technologies 
advance.112 It would be useful to develop similar strategies and goals 
to integrate such technologies to bridge the gap between limited 
spatial information in OA joint tissues and answering open questions 
about OA phenotypes as a collective research community.

Multi-omics

Most individual omic studies in OA have focused on a single tech-
nology. However, the integration of multiple omics technologies on 
biological samples from the same individual may help to uncover links 
between transcriptomic, proteomic and metabolomic signatures, among 
other technologies, that could aid in defining novel molecular profiles of 
individual OA patients, generating patient-specific endotypes (Fig. 4). A 
current multi-omics approach is integrating scRNA-seq with spatial se-
quencing, using deconvolution approaches to define cell populations 
spatially.113 In addition, scATAC-seq and scRNA-seq can be performed to 

Fig. 4                                                                                                         

Multi-omics integration for identification of OA endophenotypes. Combining sociodemographic, clinical, and omic-technology data can inform of 
OA patient endophenotypes through statistical analyses, integrative computational analyses, and artificial intelligence. Of note, multiple en-
dotype-phenotype combinations are possible using this approach. Uncovering OA endophenotypes can enable precision medicine approaches 
for treatment and enhanced therapeutic discovery.
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identify open chromatin regions linked to RNA gene expression,114 with 
computational approaches used to predict transcription factors able to 
bind accessible DNA regions and regulate transcriptomic programs.

Several challenges exist for multi-omics analyses including dif-
ferences in initial data handling, individual omic data heterogeneity 
and noise, computational constraints, and data interpretations.115,116

However, various approaches have been proposed to investigate 
multi-omics data including correlation analyses,117 network-based 
approaches,117–119 supervised or unsupervised machine learning,120

among others.121,122 Tools and visualization portals can aid in multi- 
omics analysis and interpretation.122,123

In addition to generating multi-omics OA endotypes, integration 
with patient sociodemographic and clinical variables (phenotypes) 
to generate endophenotypes will be critical (Fig. 4). Not surprisingly, 
there are associations between signatures of omic datasets and OA 
risk factors,124–128 as well as omic signatures and measures of OA 
disease,42,129–133 suggesting linkages across OA disease, omic pat-
terns, and patient phenotypes. Integrating patient-level character-
istics with biological omic data may be helpful in unraveling the 
heterogeneity of OA patients and therapeutic outcomes. Some tools 
have incorporated the ability to investigate multi-omics and clinical 
variables together to uncover consensus clusters,134 essentially en-
dophenotypes. Although currently undefined, multiple endotypes 
may underlie individual patient phenotypes, aiding in our under-
standing of OA patient heterogeneity and possibly explaining dif-
ferences in OA outcomes based on phenotype alone. Determining 
how endophenotypes relate to disease prognosis and therapeutic 
efficacy will be vital to improve outcomes for patients with OA.

Conclusions

Since their inception, the utilization of transcriptomics, pro-
teomics and metabolomics technologies has made remarkable 
strides in advancing our understanding of molecular, cellular, and 
tissue contributions to OA disease pathology and joint homeostasis. 
As omic technologies have progressed, so too has the breadth and 
depth of information collected regarding transcriptomes, proteomes 
and metabolomes in OA.

The next goals of omic research in OA appear clear: 1) further 
technological improvements and novel additions to omic meth-
odologies; 2) expansion of omic datasets to include OA patient 
phenotypes and the incorporation of spatial information; and 3) 
analysis of multi-omics datasets from various platforms and patient- 
level data to define OA patient endophenotypes. These goals are 
poised to enhance our understanding of OA heterogeneity, improve 
the integration of specific OA endophenotypes into study designs, 
and ultimately improve study outcomes and interpretations for 
more effective OA precision medicine approaches.
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