413 research outputs found

    Metamorphosis Imposes Variable Constraints on Genome Expansion through Effects on Development

    Get PDF
    Genome size varies ∼100,000-fold across eukaryotes and has long been hypothesized to be influenced by meta- morphosis in animals. Transposable element accumulation has been identified as a major driver of increase, but the nature of constraints limiting the size of genomes has remained unclear, even as traits such as cell size and rate of development co-vary strongly with genome size. Salamanders, which possess diverse metamorphic and non-metamorphic life histories, join the lung- fish in having the largest vertebrate genomes—3 to 40 times that of humans—as well as the largest range of variation in genome size. We tested 13 biologically-inspired hypotheses exploring how the form of metamorphosis imposes varying constraints on genome expansion in a broadly representative phylogeny containing 118 species of salamanders. We show that metamorphosis during which animals undergo the most extensive and synchronous remodeling imposes the most severe constraint against genome expansion, with the severity of constraint decreasing with reduced extent and synchronicity of remodeling. More generally, our work demonstrates the potential for broader interpretation of phylogenetic comparative analysis in exploring the balance of multiple evolutionary pressures shaping phenotypic evolution

    Identification of small interfering RNA targeting Signal Transducer and Activator of Transcription 6: Characterisation and selection of candidates for pre-clinical development

    Get PDF
    The interleukin (IL)-13 pathway and its associated transcription factor, signal transducer and activator of transcription 6 (STAT6), have been clearly implicated in the pathogenesis of bronchial asthma. We have developed a system to effectively screen the STAT6 gene for targeting with small interfering (si) RNA molecules. By incorporating an in silico and in vitro screening system we were able to identify fourteen siRNA molecules suitable for pre-clinical drug development. Furthermore, we were able to demonstrate that modification of certain siRNAs, designed to improve in vivo longevity, was possible without significant loss of target knockdown efficacy and that the siRNA produced by our selection process did not induce demonstrable interferon responses. These data suggest that several STAT6-targeting siRNA suitable for pre-clinical development are available for potential use in the treatment of asthma

    Declining Sex Ratio in a First Nation Community

    Get PDF
    Members of the Aamjiwnaang First Nation community near Sarnia, Ontario, Canada, voiced concerns that there appeared to be fewer male children in their community in recent years. In response to these concerns, we assessed the sex ratio (proportion of male births) of the Aamjiwnaang First Nation over the period 1984–2003 as part of a community-based participatory research project. The trend in the proportion of male live births of the Aamjiwnaang First Nation has been declining continuously from the early 1990s to 2003, from an apparently stable sex ratio prior to this time. The proportion of male births (m) showed a statistically significant decline over the most recent 10-year period (1994–2003) (m = 0.412, p = 0.008) with the most pronounced decrease observed during the most recent 5 years (1999–2003) (m = 0.348, p = 0.006). Numerous factors have been associated with a decrease in the proportion of male births in a population, including a number of environmental and occupational chemical exposures. This community is located within the Great Lakes St. Clair River Area of Concern and is situated immediately adjacent to several large petrochemical, polymer, and chemical industrial plants. Although there are several potential factors that could be contributing to the observed decrease in sex ratio of the Aamjiwnaang First Nation, the close proximity of this community to a large aggregation of industries and potential exposures to compounds that may influence sex ratios warrants further assessment into the types of chemical exposures for this population. A community health survey is currently under way to gather more information about the health of the Aamjiwnaang community and to provide additional information about the factors that could be contributing to the observed decrease in the proportion of male births in recent years

    Mice Engrafted with Human Fetal Thymic Tissue and Hematopoietic Stem Cells Develop Pathology Resembling Chronic Graft-versus-Host Disease

    Get PDF
    AbstractChronic graft-versus-host disease (cGVHD) is a significant roadblock to long-term hematopoietic stem cell (HSC) transplantation success. Effective treatments for cGVHD have been difficult to develop, in part because of a paucity of animal models that recapitulate the multiorgan pathologies observed in clinical cGVHD. Here we present an analysis of the pathology that occurs in immunodeficient mice engrafted with human fetal HSCs and implanted with fragments of human fetal thymus and liver. Starting at time points generally later than 100 days post-transplantation, the mice developed signs of illness, including multiorgan cellular infiltrates containing human T cells, B cells, and macrophages; fibrosis in sites such as lungs and liver; and thickened skin with alopecia. Experimental manipulations that delayed or reduced the efficiency of the HSC engraftment did not affect the timing or progression of disease manifestations, suggesting that pathology in this model is driven more by factors associated with the engrafted human thymic organoid. Disease progression was typically accompanied by extensive fibrosis and degradation of the thymic organoid, and there was an inverse correlation of disease severity with the frequency of FoxP3+ thymocytes. Hence, the human thymic tissue may contribute T cells with pathogenic potential, but the generation of regulatory T cells in the thymic organoid may help to control these cells before pathology resembling cGVHD eventually develops. This model thus provides a new system to investigate disease pathophysiology relating to human thymic events and to evaluate treatment strategies to combat multiorgan fibrotic pathology produced by human immune cells

    Molecular polymorphism of human enzymes as the basis of individual sensitivity to drugs. Supercomputer-assisted modeling as a tool for analysis of structural changes and enzymatic activity of proteins

    Get PDF
    © 2016, Springer Science+Business Media New York.The nature of individual sensitivity to drugs associated with molecular polymorphism of human enzymes is discussed. The influence of molecular polymorphism on the activity of key human esterases, in particular, cholinesterases and carboxylesterase, responsible for hydrolytic metabolism of ester-containing drugs, is analyzed. A method was developed, which involves supercomputer-assisted modeling as a tool for assessment of molecular mechanism of the impact of point mutations on the catalytic activity of enzymes. This work is a part of a study aimed at elaboration of the concept and methods of personalized medicine

    The cloned butyrylcholinesterase (BCHE) gene maps to a single chromosome site, 3q26

    Full text link
    Human tissues have two distinct cholinesterase activities: acetylcholinesterase and butyrylcholinesterase. Acetylcholinesterase functions in the transmission of nerve impulses, whereas the physiological function of butyrylcholinesterase remains unknown. An atypical form of butyrylcholinesterase or the absence of its activity leads to prolonged apnea following administration of the muscle relaxant suxamethonium. Inheritance of these butyrylcholinesterase variants is consistent with the enzyme activity being encoded in a single autosomal locus, BCHE (formerly CHE1 and E1), which has been assigned to chromosome 3. Previous in situ hybridization of a BCHE cDNA probe gave evidence of homologous sequences at 3q26 and 16q11-q23, raising the possibility of more than one locus coding for butyrylcholinesterase [20.] Hum. Genet. 77: 325-328]. Using a different cDNA probe hybridized in situ to 46,XX,inv(3)(p25q21) metaphase chromosomes, we report here the localization of BCHE to a single autosomal location: 3q26.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29109/1/0000147.pd

    Biochemical and genetic analysis of butyrylcholinesterase (BChE) in a family, due to prolonged neuromuscular blockade after the use of succinylcholine

    Get PDF
    Butyrylcholinesterase (BChE) is a plasma enzyme that catalyzes the hydrolysis of choline esters, including the muscle-relaxant succinylcholine and mivacurium. Patients who present sustained neuromuscular blockade after using succinylcholine usually carry BChE variants with reduced enzyme activity or an acquired BChE deficiency. We report here the molecular basis of the BCHE gene underlying the slow catabolism of succinylcholine in a patient who underwent endoscopic nasal surgery. We measured the enzyme activity of BChE and extracted genomic DNA in order to study the promoter region and all exons of the BCHE gene of the patient, her parents and siblings. PCR products were sequenced and compared with reference sequences from GenBank. We detected that the patient and one of her brothers have two homozygous mutations: nt1615 GCA > ACA (Ala539Thr), responsible for the K variant, and nt209 GAT > GGT (Asp70Gly), which produces the atypical variant A. Her parents and two of her brothers were found to be heterozygous for the AK allele, and another brother is homozygous for the normal allele. Sequence analysis of exon 1 including 5′UTR showed that the proband and her brother are homozygous for –116GG. The AK/AK genotype is considered the most frequent in hereditary hypocholinesterasemia (44%). This work demonstrates the importance of defining the phenotype and genotype of the BCHE gene in patients who are subjected to neuromuscular block by succinylcholine, because of the risk of prolonged neuromuscular paralysis

    Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis

    Get PDF
    DNA methyltransferase 3B (Dnmt3b) belongs to a family of enzymes responsible for methylation of cytosine residues in mammals. DNA methylation contributes to the epigenetic control of gene transcription and is deregulated in virtually all human tumors. To better understand the generation of cancer-specific methylation patterns, we genetically inactivated Dnmt3b in a mouse model of MYC-induced lymphomagenesis. Ablation of Dnmt3b function using a conditional knockout in T cells accelerated lymphomagenesis by increasing cellular proliferation, which suggests that Dnmt3b functions as a tumor suppressor. Global methylation profiling revealed numerous gene promoters as potential targets of Dnmt3b activity, the majority of which were demethylated in Dnmt3b–/– lymphomas, but not in Dnmt3b–/– pretumor thymocytes, implicating Dnmt3b in maintenance of cytosine methylation in cancer. Functional analysis identified the gene Gm128 (which we termed herein methylated in normal thymocytes [Ment]) as a target of Dnmt3b activity. We found that Ment was gradually demethylated and overexpressed during tumor progression in Dnmt3b–/– lymphomas. Similarly, MENT was overexpressed in 67% of human lymphomas, and its transcription inversely correlated with methylation and levels of DNMT3B. Importantly, knockdown of Ment inhibited growth of mouse and human cells, whereas overexpression of Ment provided Dnmt3b+/+ cells with a proliferative advantage. Our findings identify Ment as an enhancer of lymphomagenesis that contributes to the tumor suppressor function of Dnmt3b and suggest it could be a potential target for anticancer therapies

    The effects of frequent nocturnal home hemodialysis: the Frequent Hemodialysis Network Nocturnal Trial

    Get PDF
    Prior small studies have shown multiple benefits of frequent nocturnal hemodialysis compared to conventional three times per week treatments. To study this further, we randomized 87 patients to three times per week conventional hemodialysis or to nocturnal hemodialysis six times per week, all with single-use high-flux dialyzers. The 45 patients in the frequent nocturnal arm had a 1.82-fold higher mean weekly stdKt/Vurea, a 1.74-fold higher average number of treatments per week, and a 2.45-fold higher average weekly treatment time than the 42 patients in the conventional arm. We did not find a significant effect of nocturnal hemodialysis for either of the two coprimary outcomes (death or left ventricular mass (measured by MRI) with a hazard ratio of 0.68, or of death or RAND Physical Health Composite with a hazard ratio of 0.91). Possible explanations for the left ventricular mass result include limited sample size and patient characteristics. Secondary outcomes included cognitive performance, self-reported depression, laboratory markers of nutrition, mineral metabolism and anemia, blood pressure and rates of hospitalization, and vascular access interventions. Patients in the nocturnal arm had improved control of hyperphosphatemia and hypertension, but no significant benefit among the other main secondary outcomes. There was a trend for increased vascular access events in the nocturnal arm. Thus, we were unable to demonstrate a definitive benefit of more frequent nocturnal hemodialysis for either coprimary outcome
    corecore