12 research outputs found

    Impact of internet of things (IoT) in disaster management: a task-technology fit perspective

    Get PDF
    YesDisaster management aims to mitigate the potential damage from the disasters, ensure immediate and suitable assistance to the victims, and attain effective and rapid recovery. These objectives require a planned and effective rescue operation post such disasters. Different types of information about the impact of the disaster are, hence, required for planning an effective and immediate relief operation. The IoT technology available today is quite mature and has the potential to be very useful in disaster situations. This paper analyzes the requirements for planning rescue operation for such natural disasters and proposes an IoT based solution to cater the identified requirements. The proposed solution is further validated using the task-technology fit (TTF) approach for analyzing the significance of the adoption of IoT technology for disaster management. Results from the exploratory study established the core dimensions of the task requirements and the TTF constructs. Results from the confirmatory factor analysis using PLS path modelling, further, suggest that both task requirements and IoT technology have significant impact on the IoT TTF in the disaster management scenario. This paper makes significant contributions in the development of appropriate constructs for modeling TTF for IoT Technology in the context of disaster management

    Radon measurements by etched track detectors: applications in radiation protection, earth sciences and the environment

    No full text
    Exposure to radon gas, which is present in the environment naturally, constitutes over half the radiation dose received by the general public annually. At present, the most widely used method of measuring radon concentration levels throughout the world, both in dwellings and in the field, is by etched track detectors - also known as Solid State Nuclear Detectors (SSNTDs). Although this is not only the most widely used method but is also the simplest and the cheapest, yet there is at present no book available on the market globally, devoted exclusively or largely to the methodology of, and dea

    The ability of using the cavitation phenomenon as a tool to modify the surface characteristics in micro- and in nano-level

    Get PDF
    The aim of this paper is to investigate the possible application of the cavitation phenomenon as efficient method to modify the surface properties (e.g. the surface roughness) in the nano- and micro-levels. Aluminum alloy (AlSiMg) specimens were subjected to high speed submerged cavitating jets under various working conditions, for short time periods between 15 and 30 s. The force generated by the cavitating jet is employed to modify the surface roughness of the specimen. The target surface was analyzed with optical microscopy, white light interferometry, atomic force microscopy (AFM) and also with electrostatic force microscopy (EFM). The results show the possibility to use the cavitation bubbles as a nanofabrication method e.g. for shotless surface peening. With AFM, the deformation mechanism and the formation of planar or wavy slip were also investigated. EFM shows that the changes in the surface roughness also have a strong influence on, the electrostatic field above a biased sample
    corecore