72 research outputs found

    Reusing the NCBO BioPortal technology for agronomy to build AgroPortal

    Get PDF
    Many vocabularies and ontologies are produced to represent and annotate agronomic data. By reusing the NCBO BioPortal technology, we have already designed and implemented an advanced prototype ontology repository for the agronomy domain. We plan to turn that prototype into a real service to the community. The AgroPortal project aims at reusing the scientific outcomes and experience of the biomedical domain in the context of plant, agronomic, food, environment (perhaps animal) sciences. We offer an ontology portal which features ontology hosting, search, versioning, visualization, comment, recommendation, enables semantic annotation, as well as storing and exploiting ontology alignments. All of these within a fully semantic web compliant infrastructure. The AgroPortal specifically pays attention to respect the requirements of the agronomic community in terms of ontology formats (e.g., SKOS, trait dictionaries) or supported features. In this paper, we present our prototype as well as preliminary outputs of four driving agronomic use cases. With the experience acquired in the biomedical domain and building atop of an already existing technology, we think that AgroPortal offers a robust and stable reference repository that will become highly valuable for the agronomic domain

    Gigwa v2—Extended and improved genotype investigator

    Get PDF
    The study of genetic variations is the basis of many research domains in biology. From genome structure to population dynamics, many applications involve the use of genetic variants. The advent of next-generation sequencing technologies led to such a flood of data that the daily work of scientists is often more focused on data management than data analysis. This mass of genotyping data poses several computational challenges in terms of storage, search, sharing, analysis, and visualization. While existing tools try to solve these challenges, few of them offer a comprehensive and scalable solution. Gigwa v2 is an easy-to-use, species-agnostic web application for managing and exploring high-density genotyping data. It can handle multiple databases and may be installed on a local computer or deployed as an online data portal. It supports various standard import and export formats, provides advanced filtering options, and offers means to visualize density charts or push selected data into various stand-alone or online tools. It implements 2 standard RESTful application programming interfaces, GA4GH, which is health-oriented, and BrAPI, which is breeding-oriented, thus offering wide possibilities of interaction with third-party applications. The project home page provides a list of live instances allowing users to test the system on public data (or reasonably sized user-provided data). This new version of Gigwa provides a more intuitive and more powerful way to explore large amounts of genotyping data by offering a scalable solution to search for genotype patterns, functional annotations, or more complex filtering. Furthermore, its user-friendliness and interoperability make it widely accessible to the life science community

    AgroPortal: a vocabulary and ontology repository for agronomy

    Get PDF
    Many vocabularies and ontologies are produced to represent and annotate agronomic data. However, those ontologies are spread out, in different formats, of different size, with different structures and from overlapping domains. Therefore, there is need for a common platform to receive and host them, align them, and enabling their use in agro-informatics applications. By reusing the National Center for Biomedical Ontologies (NCBO) BioPortal technology, we have designed AgroPortal, an ontology repository for the agronomy domain. The AgroPortal project re-uses the biomedical domain’s semantic tools and insights to serve agronomy, but also food, plant, and biodiversity sciences. We offer a portal that features ontology hosting, search, versioning, visualization, comment, and recommendation; enables semantic annotation; stores and exploits ontology alignments; and enables interoperation with the semantic web. The AgroPortal specifically satisfies requirements of the agronomy community in terms of ontology formats (e.g., SKOS vocabularies and trait dictionaries) and supported features (offering detailed metadata and advanced annotation capabilities). In this paper, we present our platform’s content and features, including the additions to the original technology, as well as preliminary outputs of five driving agronomic use cases that participated in the design and orientation of the project to anchor it in the community. By building on the experience and existing technology acquired from the biomedical domain, we can present in AgroPortal a robust and feature-rich repository of great value for the agronomic domain. Keyword

    Oryza Tag Line, a phenotypic mutant database for the GĂ©noplante rice insertion line library

    Get PDF
    To organize data resulting from the phenotypic characterization of a library of 30 000 T-DNA enhancer trap (ET) insertion lines of rice (Oryza sativa L cv. Nipponbare), we developed the Oryza Tag Line (OTL) database (http://urgi.versailles.inra.fr/OryzaTagLine/). OTL structure facilitates forward genetic search for specific phenotypes, putatively resulting from gene disruption, and/or for GUSA or GFP reporter gene expression patterns, reflecting ET-mediated endogenous gene detection. In the latest version, OTL gathers the detailed morpho-physiological alterations observed during field evaluation and specific screens in a first set of 13 928 lines. Detection of GUS or GFP activity in specific organ/tissues in a subset of the library is also provided. Search in OTL can be achieved through trait ontology category, organ and/or developmental stage, keywords, expression of reporter gene in specific organ/tissue as well as line identification number. OTL now contains the description of 9721 mutant phenotypic traits observed in 2636 lines and 1234 GUS or GFP expression patterns. Each insertion line is documented through a generic passport data including production records, seed stocks and FST information. 8004 and 6101 of the 13 928 lines are characterized by at least one T-DNA and one Tos17 FST, respectively that OTL links to the rice genome browser OryGenesDB

    International Analysis of Electronic Health Records of Children and Youth Hospitalized With COVID-19 Infection in 6 Countries

    Get PDF
    Question What are international trends in hospitalizations for children and youth with SARS-CoV-2, and what are the epidemiological and clinical features of these patients? Findings This cohort study of 671 children and youth found discrete surges in hospitalizations with variable trends and timing across countries. Common complications included cardiac arrhythmias and viral pneumonia, and laboratory findings included elevations in markers of inflammation and abnormalities of coagulation; few children and youth were treated with medications directed specifically at SARS-CoV-2. Meaning These findings suggest large-scale informatics-based approaches used to incorporate electronic health record data across health care systems can provide an efficient source of information to monitor disease activity and define epidemiological and clinical features of pediatric patients hospitalized with SARS-CoV-2 infections

    International comparisons of laboratory values from the 4CE collaborative to predict COVID-19 mortality

    Get PDF
    Given the growing number of prediction algorithms developed to predict COVID-19 mortality, we evaluated the transportability of a mortality prediction algorithm using a multi-national network of healthcare systems. We predicted COVID-19 mortality using baseline commonly measured laboratory values and standard demographic and clinical covariates across healthcare systems, countries, and continents. Specifically, we trained a Cox regression model with nine measured laboratory test values, standard demographics at admission, and comorbidity burden pre-admission. These models were compared at site, country, and continent level. Of the 39,969 hospitalized patients with COVID-19 (68.6% male), 5717 (14.3%) died. In the Cox model, age, albumin, AST, creatine, CRP, and white blood cell count are most predictive of mortality. The baseline covariates are more predictive of mortality during the early days of COVID-19 hospitalization. Models trained at healthcare systems with larger cohort size largely retain good transportability performance when porting to different sites. The combination of routine laboratory test values at admission along with basic demographic features can predict mortality in patients hospitalized with COVID-19. Importantly, this potentially deployable model differs from prior work by demonstrating not only consistent performance but also reliable transportability across healthcare systems in the US and Europe, highlighting the generalizability of this model and the overall approach

    BrAPI-an application programming interface for plant breeding applications

    Get PDF
    Motivation: Modern genomic breeding methods rely heavily on very large amounts of phenotyping and genotyping data, presenting new challenges in effective data management and integration. Recently, the size and complexity of datasets have increased significantly, with the result that data are often stored on multiple systems. As analyses of interest increasingly require aggregation of datasets from diverse sources, data exchange between disparate systems becomes a challenge. Results: To facilitate interoperability among breeding applications, we present the public plant Breeding Application Programming Interface (BrAPI). BrAPI is a standardized web service API specification. The development of BrAPI is a collaborative, community-based initiative involving a growing global community of over a hundred participants representing several dozen institutions and companies. Development of such a standard is recognized as critical to a number of important large breeding system initiatives as a foundational technology. The focus of the first version of the API is on providing services for connecting systems and retrieving basic breeding data including germplasm, study, observation, and marker data. A number of BrAPI-enabled applications, termed BrAPPs, have been written, that take advantage of the emerging support of BrAPI by many databases

    AgBioData consortium recommendations for sustainable genomics and genetics databases for agriculture

    Get PDF
    The future of agricultural research depends on data. The sheer volume of agricultural biological data being produced today makes excellent data management essential. Governmental agencies, publishers and science funders require data management plans for publicly funded research. Furthermore, the value of data increases exponentially when they are properly stored, described, integrated and shared, so that they can be easily utilized in future analyses. AgBioData (https://www.agbiodata.org) is a consortium of people working at agricultural biological databases, data archives and knowledgbases who strive to identify common issues in database development, curation and management, with the goal of creating database products that are more Findable, Accessible, Interoperable and Reusable. We strive to promote authentic, detailed, accurate and explicit communication between all parties involved in scientific data. As a step toward this goal, we present the current state of biocuration, ontologies, metadata and persistence, database platforms, programmatic (machine) access to data, communication and sustainability with regard to data curation. Each section describes challenges and opportunities for these topics, along with recommendations and best practices
    • 

    corecore